

Prevalence Estimates of Predicted Pathogenic COL4A3 – COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome

Journal:	Journal of the American Society of Nephrology
Manuscript ID	JASN-2020-07-1065.R3
Manuscript Type:	Original Article - Basic Research
Date Submitted by the Author:	29-Apr-2021
Complete List of Authors:	Gibson, Joel; The University of Melbourne Department of Medicine Austin Health and Northern Health Fieldhouse, Rachel; Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics Chan, Melanie; University College London, Department of Renal Medicine; Queen Mary University of London, Genomics England Sadeghi-Alavijeh, Omid; University College London, Department of Renal Medicine; Queen Mary University of London, Genomics England Burnett, Leslie; Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics Izzi, Valerio; University of Oulu, Center for Cell-Matrix Research and Biocenter Oulu Persikov, Anton; Princeton University Princeton Center for Quantitative Biology Lewis-Sigler Institute for Integrative Genomics Gale, Daniel; University of London, Genomics England Storey, Helen ; Guy's Hospital, Molecular Genetics, Viapath Laboratories Savige, Judy; The University of Melbourne Department of Medicine Austin Health and Northern Health
Keywords:	Alport-s syndrome, Thin basement membrane nephropathy, Haematuria, COL4A5, COL4A3, COL4A4, collagen IV, genetic renal disease, glomerular basement membrane, Gly substitutions
Keywords:	Savige, Judy; The University of Melbourne Department of Medicine Austin Health and Northern Health Alport-s syndrome, Thin basement membrane nephropathy, Haema COL4A5, COL4A3, COL4A4, collagen IV, genetic renal disease,

Authors: Gibson, Joel; Fieldhouse, Rachel; Chan, Melanie; Sadeghi-Alavijeh, Omid; Burnett, Leslie; Izzi, Valerio; Persikov, Anton; Gale, Daniel; Storey, Helen ; Savige, Judy

Title: Prevalence Estimates of Predicted Pathogenic COL4A3 – COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome

Running title: Prevalence of COL4A3-COL4A5 variants

Manuscript Type: Original Article - Basic Research

Manuscript Category: Genetics and development

Funders: FUNDREF :No data available.

Financial Disclosure: No D. Gale reports Honoraria from Alexion, Otsuka; and Other
Interests/Relationships as a Trustee for AlportUK. J. Savige reports Other Interests/Relationships with
Alport Foundation Australia, and the PKD Australia Scientific Board. L. Burnett reports Research Funding
from Takeda (Shire): Investigator Initiated Grant for genomic screening of Gaucher disease Scientific
Advisor or Membership as a Member of Genetics Advisory Committee, Royal College of Pathologists of
Australasia (RCPA), Member of Genetics Services Executive Committee, NSW Health Genetics Network,
Member of Community Genetics NSW Advisory Committee, These roles are honorary; Other
Interests/Relationships as a Member of KidGen Renal Genetics Flagship of Australian Genomics,
Member of CIRCA Clinical Immunogenomics Research Consortium Australasia, Non-Executive Director,
AACB Services Pty Ltd, Australasian Association of Clinical Biochemists, These roles are honorary. The

Study Group/Organization Name: CUST_STUDY_GROUP/ORGANIZATION_NAME :No data available.

Study Group Members' Names: CUST_STUDY_GROUP_MEMBERS :No data available.

Total number of words: 3800

Abstract: Background: The prevalence of Alport syndrome varies from one in 5,000 to one in 53,000. This study estimated the frequencies of predicted pathogenic <i>COL4A3– COL4A5</i> variants in sequencing databases of populations without known kidney disease.

Methods: Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria that considered collagen IV α3–α5 position 1 Gly to be critical domains. The population frequencies of predicted pathogenic <i>COL4A3–COL4A5</i> variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants.

Results: <i>COL4A3–COL4A5</i> variants resulting in position 1 Gly substitutions were confirmed associated with haematuria (p each <0.0001). Predicted pathogenic COL4A5 variants were found in at least one in 2,320 individuals. p.(Gly624Asp), represented nearly half (16/33, 48%) the variants in Europeans. Most <i>COL4A5</i> variants (54/59, 92%) had a biochemical feature that potentially mitigated clinical impact. Predicted pathogenic heterozygous <i>COL4A3</i> and <i>COL4A4</i> variants affected one in 106 of the population, consistent with the finding of Thin basement membrane nephropathy in normal donor kidney biopsies. Predicted pathogenic compound heterozygous variants occurred in one in 88,866 individuals and digenic variants in at least one in 44,793.

Conclusions: The population frequencies for Alport syndrome are suggested by the frequencies of predicted pathogenic <i>COL4A3–COL4A5</i> variants but must be adjusted for the disease penetrance of individual variants, as well as the likelihood of already diagnosed disease and non-Gly substitutions. Disease penetrance may depend on other genetic and environmental factors.

Significance Statement

The population frequencies of Alport syndrome vary greatly in different reports. This study examined a population sequencing database of individuals not known to have kidney disease using filtering steps corresponding to the ACMG/AMP criteria for 'predicted pathogenic' variants in *COL4A3-COL4A5* that considered collagen chain position 1 Gly residues 'critical domains.' Predicted pathogenic *COL4A5* variants occurred in at least one in 2,320 individuals. Heterozygous *COL4A3* or *COL4A4* variants affected one in 106; compound heterozygous *COL4A3* or *COL4A4* variants affected one in 88,866. The actual prevalences are even greater since they also include already-diagnosed disease and other variants not examined here. The high frequency of predicted pathogenic *COL4A3-COL4A5* variants suggests that other genetic and environmental factors mitigate the corresponding clinical manifestations of disease.

Prevalence Estimates of Predicted Pathogenic *COL4A3 – COL4A5* Variants in a Population Sequencing Database and their Implications for Alport Syndrome

¹Joel Gibson, ²Rachel Fieldhouse, ^{3,4}Melanie MY Chan, ^{3,4}Omid Sadeghi-Alavijeh, ²Leslie Burnett, ⁵Valerio Izzi, ⁶Anton V Persikov, ⁴Genomics England Research Consortium, ^{3,4}Daniel P Gale, ⁷Helen Storey, ¹Judy Savige

¹The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA; ²Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUSTRALIA; ³Department of Renal Medicine, University College London, London, UK; ⁴Genomics England, Queen Mary University of London, London, UK; ⁵Center for Cell-Matrix Research and Biocenter Oulu, University of Oulu, FINALND;⁶Lewis-Sigler Institute for Integrative Genomics, Princeton University, New Jersey, 08544, USA; ⁷Molecular Genetics, Viapath Laboratories, 5th floor Tower Wing, Guy's Hospital, London, SE1 9RT, UK.

Short running title: Population Frequency of Alport Syndrome

Address for Correspondence:

Prof Judy Savige The University of Melbourne Department of Medicine (Melbourne Health and Northern Health) Royal Melbourne Hospital Parkville VIC 3050 AUSTRALIA Email: jasavige@unimelb.edu.au Tel: + 613 8344 3260

Abstract

Background: The prevalence of Alport syndrome varies from one in 5,000 to one in 53,000. This study estimated the frequencies of predicted pathogenic *COL4A3*–*COL4A5* variants in sequencing databases of populations without known kidney disease.

Methods: Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria that considered collagen IV $\Box 3-\Box 5$ position 1 Gly to be critical domains. The population frequencies of predicted pathogenic *COL4A3– COL4A5* variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants.

Results: *COL4A3–COL4A5* variants resulting in position 1 Gly substitutions were confirmed associated with haematuria (p each <0.0001). Predicted pathogenic *COL4A5* variants were found in at least one in 2,320 individuals. p.(Gly624Asp), represented nearly half (16/33, 48%) the variants in Europeans. Most *COL4A5* variants (54/59, 92%) had a biochemical feature that potentially mitigated clinical impact.

Predicted pathogenic heterozygous *COL4A3* and *COL4A4* variants affected one in 106 of the population, consistent with the finding of thin basement membrane nephropathy in normal donor kidney biopsies. Predicted pathogenic compound heterozygous variants occurred in one in 88,866 individuals and digenic variants in at least one in 44,793.

Conclusions: The population frequencies for Alport syndrome are suggested by the frequencies of predicted pathogenic *COL4A3–COL4A5* variants, but must be adjusted for the disease penetrance of individual variants as well as for the likelihood of already diagnosed disease and non-Gly substitutions. Disease penetrance may depend on other genetic and environmental factors.

Introduction

Alport syndrome is an inherited renal disease characterised by progressive kidney failure, hearing loss, lenticonus and fleck retinopathy¹. X-linked (XL) inheritance results from pathogenic variants in *COL4A5*², and autosomal recessive (AR) disease from two pathogenic variants in *COL4A3* or *COL4A4 in trans*³. The *COL4A3* – *COL4A5* genes code for the collagen IV \Box , \Box and \Box chains that trimerise to form a network that represents the major component of the basement membranes of the glomerulus, cochlea, lens and retina.

Individuals with heterozygous pathogenic *COL4A3* or *COL4A4* variants are carriers for AR Alport syndrome and sometimes diagnosed with Thin basement membrane nephropathy^{4, 5}, even without a renal biopsy being performed. The term 'autosomal dominant' (AD) Alport syndrome is also used but affected individuals typically have persistent haematuria and not the hearing loss, ocular abnormalities, or typical glomerular basement membrane (GBM) lamellation⁶. In contrast to XL and AR disease, the risk of renal failure for heterozygous pathogenic *COL4A3* or *COL4A4* variants is uncertain because most reported series comprise only hospital-based patients⁷. Digenic Alport syndrome occurs with heterozygous pathogenic variants in two different *COL4A3* – *COL4A5* genes⁸, and clinical features are more severe than with only a heterozygous *COL4A3* or *COL4A4* variant ⁸. In addition, any variant or combination of variants in *COL4A3* – *COL4A5* may result in focal and segmental glomerulosclerosis probably secondary to a defective GBM and podocyte loss^{9, 10}.

Alport syndrome has been considered rare because it affects fewer than one in 2,000 individuals¹¹, and the US has less than 200,000 cases⁷. Its exact prevalence is not known ¹². Population-based studies have suggested frequencies of one in 5,000 in Utah¹³; one in 17,000 in southern Sweden¹⁴; and one in 53,000 in Finland¹⁵. However persistent haematuria and GBM thinning that correspond to heterozygous *COL4A3* or *COL4A4* variants occur in 1- 2.5% of children and adults on population screening^{16, 17}, and, depending on the definition of thinning, in 4 % to 7% of normal donor kidney transplant biopsies¹⁸ respectively.

Alport syndrome is suspected where persistent haematuria occurs together with a family history of haematuria or renal impairment; or an abnormal GBM appearance or collagen IV chain composition¹⁹. Haematuria is highly penetrant^{20, 21} but many affected individuals are undiagnosed. These are often men with X-linked disease and late onset kidney failure, or where there is no family history or the kidney biopsy is too scarred to demonstrate the characteristic features. Although women with X-linked disease are affected twice as often as men their recognition is often even more problematic²², because they often have only haematuria and a thinned rather than lamellated GBM²².

The most sensitive method for the diagnosis of Alport syndrome is genetic testing^{19,} ²³ with Massively Parallel Sequencing, which detects causative variants in up to 90% of cases²³. Identifying likely pathogenic variants in the *COL4A3-COL4A5* genes in a dataset of individuals not known to have kidney disease, such as gnomAD, gnomAD controls, Exome Variant Server (EVS) or TOPMed, indicates more accurately the population frequencies of undiagnosed *COL4A5*, heterozygous *COL4A3* or *COL4A4* variants, and hence compound heterozygous and digenic disease. However these databases share some datasets and include no clinical information. Conversely, the

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

Genomics England 100,000 Genomes Project is an independent dataset that includes clinical information but its recruitment of individuals with inherited kidney disease precludes its use in determining population frequencies.

Genomic variants are usually assessed for pathogenicity using the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria²⁴. Nonsense, canonical splice site variants and frameshift changes in the *COL4A3 – COL4A5* genes are likely to be pathogenic since loss of function is a recognised disease mechanism for these genes²⁴. However the commonest variants are missense (databases.lovd.nl/ shared/genes/). The interpretation of missense variants from a population not known to have kidney disease is complicated by the absence of clinical, segregation, and functional data **(Suppl Table 1)**, and compounded by the lack of expert panel assertions for most variants (https://clinvarminer.genetics.utah.edu/).

However affecting a 'critical domain' also represents one of the ACMG/AMP criteria for pathogenicity (PM1)²⁴, and in osteogenesis imperfecta, position 1 Gly residues in the collagen I \Box 1 chain Gly-Xaa-Yaa repeats are considered critical because of their disruptive effect on the molecule²⁵. Gly is the smallest amino acid, position 1 Gly residues are found within the interior of the collagen triple helix, and their replacement by any larger residues disturbs the helix formation. The commonest reported missense variants in *COL4A3 - COL4A5* result in position 1 Gly substitutions in the intermediate domain of the collagen IV \Box 3, \Box 4 and \Box 5 chains^{12, 25}, and the recent Chandos House meeting of the Alport Variant Consortium recommended that these are generally considered pathogenic²⁶.

There are nevertheless also important differences in the biochemistry of collagen IV and I. The collagen IV chains retain their non-collagenous amino and carboxy termini, and include multiple non-collagenous interruptions, in the Gly-Xaa-Yaa repeats of the intermediate domains (**Suppl Table 2**)²⁷⁻²⁹. Gly substitutions in the amino and carboxy termini, the interruptions and positions 2 and 3 in the Gly-Xaa-Yaa-Yaa-repeats²⁹ are not considered critical^{25, 30}.

This study used the UK 100,000 Genomes Project to confirm that predicted pathogenic position 1 Gly substitutions in the collagen IV \Box 3, \Box 4 and \Box 5 chains were associated with haematuria. It then identified predicted pathogenic *COL4A5* variants in the large, unbiased gnomAD2.1.1 dataset and confirmed the strategy using the gnomad control, EVS and TOPMed cohorts. The amount of overlap between the datasets was determined from the number of shared variants. A similar approach has been used previously to determine the population frequency of polycystic kidney and liver disease³¹.

This study then identified predicted pathogenic *COL4A3* and *COL4A4* variants in gnomAD, and used these to calculate the frequencies of compound heterozygous and digenic variants. These population frequencies provide an approximate guide to the prevalence of XL, AR (compound heterozygous) and digenic Alport syndrome and Thin basement membrane nephropathy but the precise prevalence must also take into account the penetrance of individual variants as well as the occurrence of already diagnosed disease and missense variants due to non-Gly substitutions.

Methods

Datasets

gnomAD. The Genome Aggregation Database (gnomADv2.1.1,

www.gnomAD.broadinstitute.org)³² is a large dataset that includes COL4A3 - 5alleles from unrelated adults with equal numbers of males and females who have undergone exomic (in about 90%) or genomic sequencing in disease and population studies. It includes individuals with adult-onset diseases such as diabetes, cardiac disease and psychiatric conditions, and excludes those with severe paediatric diseases and their close family members. Participants were not known to have inherited kidney disease and individuals with any severe disease were expected less frequently than in the general population. gnomAD indicates variants that are homozygous but variants are not otherwise linked to an individual and it is not possible to identify a different second variant in COL4A3 - COL4A5 and hence compound heterozygous or digenic variants directly. Ancestries are available but the clinical phenotypes are not recorded.

Three other datasets were also examined for predicted pathogenic variants in *COL4A5*. These were the **gnomAD controls** (vs2.1.1,

www.gnomAD.broadinstitute.org) which comprises alleles from the normal individuals, recruited as controls for gnomAD studies; **Exome Variant Server (EVS)** (www.evs.gs.washington.edu/EVS/) which includes alleles from exomic sequencing of individuals recruited for mainly cardiac and pulmonary studies; and **TOPMed** (www.bravo.sph.umich.edu/freeze8/hg38/) with alleles from genomic sequencing of individuals recruited for heart, lung, blood and sleep studies. Although participants in these cohorts were not known to have inherited kidney disease, they had not been specifically phenotyped for renal disease and it was uncertain how many had underlying renal disease or impaired kidney function. The gnomAD dataset includes all the 'gnomAD control' cohort, and some of the studies in the other cohorts. The amount of overlap was assumed to include the *COL4A3 – COL4A5* variants randomly and was quantitated from the number of shared variants with the same gender.

In contrast, **the Genomics England 100,000 Genomes Project** database (www.genomicsengland.co.uk/)³³ includes whole genome sequencing data from individuals with rare diseases including inherited kidney disease and their unaffected relatives. This dataset also includes clinical phenotypes including haematuria noted in the hospital records. This database was used to examine whether substitutions affecting position 1 Gly substitutions in the collagen IV \Box 3, \Box 4 and \Box 5 chains were associated with haematuria.

Ethics approval was obtained at the time of recruitment into participation in each of the constituent studies. The databases are freely-accessible online and were examined between 24 December 2019 and 1 February 2021.

COL4A3-5 variants

COL4A5 variants were described using the GRCh37/hg19 sequence with 53 exons and the reference sequence for the collagen IV \Box 5 chain (NM_033380.2, LRG_232t2). COL4A3 and COL4A4 variants were described using the GRCh37/hg19 sequence and the reference sequences for collagen IV α 3 and α 4 chains (NM 000091.4, LRG_230t1) and (NM 000092.4, LRG_231t1,) respectively.

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

The locations of the non-collagenous termini and interruptions in the collagenous domains of each chain were noted **(Suppl Table 2)**²⁷⁻²⁹**.**

Filtering steps to determine predicted pathogenic variants based on the ACMG/AMP criteria

Variants were filtered to exclude variants that failed any step in order to be confident of the corresponding population frequencies. Variants were filtered according to their effect on the canonical transcripts using the following steps and ACMG criteria (Figure 1, Suppl Table 1)³⁴. The term 'predicted pathogenic' was used for variants that were not excluded, to differentiate them from the 'pathogenic' and 'likely pathogenic' classes derived from the ACMG/AMP classification in individuals with clinical features of disease.

• Synonymous variants and intronic variants other than those affecting a +/-1 or 2 splice site were excluded.

• Variants that resulted in a protein-truncating change, frameshift, or canonical splice site change were graded **PVS1** because loss of function is a known disease mechanism for *COL4A3 – COL4A5*-associated disease²⁴.

• Missense variants resulting in position 1 Gly substitutions within the intermediate collagenous domains of the collagen IV _____ chains since missense variants are a common mechanism for *COL4A3 – COL4A5*-associated disease with a low rate of benign missense variation (**PP2**). Variants that resulted in a position 1 Gly substitution were considered to affect a critical and well-established functional domain (**PM1**).

• Missense variants were examined with individual computational tools: Polyphen-2 (PP2, score >0.8, www.genetics.bwh.harvard.edu/pph2/); SIFT (Sorting Intolerant from Tolerant, Deleterious or Polymorphism, www.sift.bii.a-star.edu.sg/); and Mutation Taster, (MT, Disease-causing, or Polymorphism, www.mutationtaster.org/). Missense variants were also examined for conservation among vertebrates (www.asia.ensembl.org/) (**PP3**).

• Variants occurred fewer than an arbitrary cut off of 30 times in gnomAD (**PM2**)³⁴. The formula used to determine the cutoff is normally based on the disease prevalence and contribution of the gene which were not known³⁵. While the cut-off varies for different genes, this level has been used for other heterogeneous genes resulting in AD kidney disease.

• Variants were assessed for previous reports as Likely Pathogenic or Pathogenic in a reputable source such as ClinVar (www.ncbi.nlm.nih.gov/clinvar/) or LOVD (www.databases.lovd.nl/shared/genes/COL4A3-5 (**PP5**) despite this practice being controversial^{36, 37}. Variants in ClinVar reported as Benign, Likely Benign, Variant of Uncertain Significance or Conflicting, were excluded. Variants in LOVD reported as Benign or Likely Benign were excluded. Variants that resulted in the same amino acid change as a previously-established pathogenic variant regardless of nucleotide change in ClinVar (www.ncbi.nlm.nih.gov/clinvar/) or LOVD

(www.databases.lovd.nl/shared/genes/COL4A3-5 were also noted (**PS1**). In these cases the submitters' evaluations were accepted since their assessments included the associated clinical data, that we were not able to access. Anyway all variants were assessed independently for pathogenicity using an objective online tool (Varsome).

• Variants were examined to determine if they resulted in a novel missense change at an amino acid where a different change was previously reported as pathogenic (PM5).

All *COL4A3-COL4A5* variants were also assessed by Varsome (www.varsome.com/) using the ACMG/AMP criteria³⁸, and *COL4A5* variants in gnomAD were assessed in Alamut (www.interactive-biosoftware.com/alamut-visual/). These semi-automated online tools were chosen because they are objective, not subject to individual laboratory practice, and are widely available. They used slightly different criteria from our filtering steps, for example, numerous computational tools, GERP scores for conservation, and weighting of scores. Variants assessed as Benign, Likely Benign or a Variant of Uncertain Significance (VUS) by Varsome or Alamut were excluded.

Predicted pathogenic *COL4A3* – *COL4A5* variants resulting in position 1 Gly substitutions in the 100,000 Genomes Project database and haematuria Individuals in the 100,000 Genomes Project database with haematuria were identified from haematuria-related Human Phenotype Ontology terms after excluding those with cancer of the kidney or bladder, or kidney stones. Predicted pathogenic variants resulting in a position 1 Gly substitution in *COL4A3* - *COL4A5* were identified from all Gly substitutions in these genes using our filtering strategy, and the total number of individuals with a predicted pathogenic variant were compared in the cohorts with haematuria and without (chi square with Yates' correction, two tailed, Graphpad).

Prevalence of predicted pathogenic variants in COL4A5, COL4A3 and COL4A4

The population frequencies of predicted pathogenic variants were calculated based on the mean number of alleles examined. For *COL4A5*, which is located on the X chromosome, the corresponding number of individuals was determined from the number of alleles after correcting for the number of males since they have only one allele for *COL4A5*. The total number of individuals recruited in the whole cohort was greater than the number calculated from the number of alleles examined because some regions of a gene were not sequenced or failed quality testing.

Prevalence of variants in different ancestries and founder variants

The frequencies of predicted pathogenic COL4A5, COL4A3 and COL4A4 variants were noted in people of different ancestries (African, Latino, Ashkenazi Jew, East Asian, European Finnish, European non-Finnish, South Asians and Others, who did not unambiguously cluster with any of the major populations by Principal Component Analysis). Any founder variants (arbitrarily set at \geq 18 alleles) were noted.

Biochemical features likely to mitigate clinical phenotypes for predicted pathogenic *COL4A5* variants

The cohort with predicted pathogenic *COL4A5* variants were then assessed for any biochemical features associated with clinically milder phenotypes that might explain the lack of previous diagnosis. Mitigating features included female gender;²² location within the 20 amino terminal exons including the amino non-collagenous domain (204 residues)³⁹; position adjacent to a non-collagenous domain or interruption ³⁰; and Gly substitutions with a less disruptive residue, such as Ala, Ser or Cys ^{40, 41}.

Calculation of population frequencies for heterozygous, compound heterozygous and digenic *COL4A3* and *COL4A4* variants

The population frequencies of predicted pathogenic heterozygous *COL4A3* and *COL4A4* variants were derived from the sum of the allele frequencies for each variant assuming that they were inherited independently and that no or very few individuals had inherited two.

The population frequency of AR Alport syndrome represents the sum of the frequencies of predicted pathogenic homozygous and compound heterozygous variants *in trans* in *COL4A3* plus *COL4A4*. Previous reports suggest homozygous inheritance represents 30% of all AR Alport syndrome⁴². Homozygous variants are indicated in gnomAD and usually result from relationships that are consanguineous or consanguineous by descent. However in Alport syndrome homozygous predicted pathogenic variants result in early onset kidney failure which would have precluded recruitment into gnomAD. The likelihood of individual homozygous *COL4A3* or *COL4A4* variants occurring by chance was very small and not calculated here.

It was not possible to identify compound heterozygous and digenic variants from the databases because variants were not linked to any individual. In addition compound heterozygous and digenic variants were likely to be underrepresented because they too are associated with early onset kidney failure. Thus the population frequencies of predicted pathogenic compound heterozygous variants in *COL4A3* or *COL4A4* were calculated simply from the likelihood of the occurrence of each allele occurring independently.

Digenic variants were calculated from two predicted pathogenic variants in COL4A3 and COL4A4 in cis or trans and from a predicted pathogenic variant in COL4A5 and either COL4A3 or COL4A4.

Results

Predicted pathogenic *COL4A3- COL4A5* variants resulting in position 1 Gly substitutions in the 100,000 Genomes Project database and haematuria

This cohort comprised 2,221 individuals with documented haematuria and 37,200 with none. It included 19 predicted pathogenic *COL4A5* variants that affected a position 1 Gly and were associated with haematuria and 9 that were not, consistent with an association with haematuria (chi-square 95.83, p<0.0001). *COL4A3* and *COL4A4* variants resulting in predicted pathogenic position 1 Gly substitutions were also associated with haematuria (p <0.0001 for each, **Table 1, Suppl Tables 3 - 5**).

COL4A5

Predicted pathogenic COL4A5 variants in gnomAD

Fifty-four variants in *COL4A5* (frameshift, nonsense and canonical splice site variants, position 1 Gly substitutions) were identified for further assessment **(Table 2)**. These included one deletion resulting in a termination codon and 6 canonical splice site variants, all predicted pathogenic and found in 8 individuals. There were also 47 position 1 Gly substitutions, but 13 were excluded on filtering (including p.(Gly953Val), Suppl Table 3), resulting in 34 Gly substitutions in 51 individuals **(Table 2)**.

Thus, gnomAD included 59 individuals with a predicted pathogenic *COL4A5* variant in a mean allele number of 170,190 (113,460 individuals) or one in 1,923 individuals. If the population frequency were calculated from the total gnomAD cohort of 136,920 individuals at the time of examination, then the population frequency was one in 2,320.

Two of the predicted pathogenic variants found in gnomAD (p.(Gly624Asp and p.(Gly752Val)) were also present in the 100,000 Genomes Project database but none of the 4 individuals with these variants had haematuria.

Population frequencies of predicted pathogenic *COL4A5* variants in different ancestries in gnomAD

The population frequencies of predicted pathogenic *COL4A5* variants differed in people of different ancestries **(Table 3)**. Predicted pathogenic *COL4A5* variants were more common in people of European (one in 1,800), African (1 in 1,733) or East Asian (1 in 2,310) ancestry. In general, *COL4A5* variants were less common in Ashkenazim (1 in 4,961) and not found in Finns.

The commonest predicted pathogenic variant, p.(Gly624Asp), was considered Pathogenic by ClinVar**and has been reported pathogenic many times⁴³. It was present 16 times in 59,512 individuals of European ancestry corresponding to a prevalence of one in 2,479. Nearly half (16/33) of all Europeans with a predicted pathogenic *COL4A5* variant had p.(Gly624Asp) and it was not present in other ancestries. This variant is associated with late onset kidney failure in men ^{44, 45}, and a 50% cumulative probability of end-stage kidney failure by the age of 54, which is nearly 30 years later than with other variants⁴⁶. The variant is located immediately adjacent to an interruption in the collagenous sequence and was found in 12 females and only 4 males, which are both factors that helped explain its association with a milder phenotype and why it had not been detected previously in individuals recruited into gnomAD.

Founder COL4A5 variants in gnomAD

Most *COL4A5* variants resulting in a Gly substitution were found once only but five were found more often, usually in a single ancestral group: p.(Gly624Asp) (n=16) and p.(Gly626Ser)(n=7) in Europeans; p.(Gly961Val)(n=5) and p.(Gly1074Ser)(n=7) in Latinos; and p.(Gly953Val) in South and East Asians. All these variants are located adjacent to a non-collagenous interruption, and are less likely to be disruptive than other position 1 Gly substitutions (**Suppl Table 2**).

Predicted pathogenic COL4A5 variants in other cohorts

In the normal control subset of gnomAD comprising a mean of 87,876 alleles or 58,584 individuals, 24 individuals had 17 predicted pathogenic variants, occurring in one in 2,441 individuals **(Table 2)**. All these variants were also found in the whole gnomAD cohort as expected.

In the EVS dataset comprising a mean of 10,563 alleles or 7,042 individuals, 3 individuals had predicted pathogenic variants, corresponding to a population frequency of one in 2,347 (**Suppl Table 6**). Five of the 8 *COL4A5* variants found in the EVS dataset were also present with a consistent gender in gnomAD suggesting at most an overlap of 5/8 (63%) variants.

In the TOPMed cohort of a mean of 125,568 alleles or 83,713 individuals, 40 individuals had predicted pathogenic variants, corresponding to a population frequency of one in 2,093 (**Suppl Table 7**). Only two of the 45 *COL4A5* variants found in the TOPMed dataset (p.(Gly524Asp) and p.(Gly1424Ser)) were also present with a consistent gender in gnomAD suggesting very little if any overlap in the datasets. The population frequency of predicted pathogenic variants *COL4A5* variants from TOPMed might therefore be considered independent and confirmatory of the gnomAD results.

Thus, the population frequencies of predicted pathogenic *COL4A5* variants varied from one in 2,320 (based on total participants recruited) or one in 1,923 (based on alleles examined) in gnomAD, one in 2,441 in the gnomAD normal controls, one in 2,347 in EVS, and one in 2,093 in TOPMed.

Mitigating features for phenotypes of predicted pathogenic *COL4A5* variants in gnomAD

Features that might mitigate the clinical features, for example, result in late onset kidney failure were found for 54 of the 59 *COL4A5* variants (92%). These included being identified in a woman (41/59, 69%); and for Gly substitutions: being located in the 20 amino exons (11/51, 22%) or adjacent to a non-collagenous interruption (23/51, 45%); or a Gly substitution with a less disruptive residue (19,37%)(**Suppl Table 8**).

COL4A3

Predicted pathogenic COL4A3 variants in gnomAD

Five hundred and seventy-four variants (2.6%) were identified in *COL4A3* in gnomAD for further assessment. Fifteen position 1 Gly substitutions were excluded because evidence was not consistent with pathogenicity **(Suppl Table 9)**. Overall there were 559 predicted pathogenic variants in a mean of 245,889 (0.23%) alleles

corresponding to a population frequency of 0.45%. These variants were position 1 Gly substitutions (n=380, in 68% of variants, 0.16% of the population), frameshift (n=110, 20% of the variants, 0.04%), nonsense (n=33, 6% of the variants, 0.01%) or splicing variants (n=36, 6% of the variants, 0.01%). No predicted pathogenic *COL4A3* variant was found in the homozygous form.

In the total cohort of 136,930 individuals, the population frequency of a predicted pathogenic *COL4A3* variant was 0.41%.

Population frequencies of predicted pathogenic *COL4A3* variants in different ancestries

Most predicted pathogenic *COL4A3* variants were present in a single ancestry. Predicted pathogenic heterozygous *COL4A3* variants were commonest in people of Latino (0.80%) or East Asian (0.64%) ancestries, and least common in Askenazim (0.14%) and Finns (0.14%) **(Table 4)**.

COL4A4

Predicted pathogenic COL4A4 variants in gnomAD

Five hundred and ninety-nine variants were identified in *COL4A4* in gnomAD for further assessment. Twenty-two position 1 Gly substitutions were excluded because evidence was not consistent with pathogenicity **(Suppl Table 9)**. The variants p.(Gly545Ala) and p.(Gly999Glu) were considered Benign and are discussed in the footnote to Suppl Table 9.

In *COL4A4*, there were 577 predicted pathogenic variants in in a mean of 233,916 alleles (0.25% alleles) corresponding to a population frequency of 0.49%. Variants were position 1 Gly substitutions (n=458, 82% of all variants, in 0.20% of the population), frameshift (n=42, 0.02%), nonsense (n=48, 0.02%) or splicing variants (n=29, 0.01%). No homozygous predicted pathogenic *COL4A4* variant was found.

In the total cohort of 136,930 individuals, the population frequency of a predicted pathogenic *COL4A4* variant was 0.42%.

Population frequencies of predicted pathogenic *COL4A4* variants in different ancestries

Heterozygous predicted pathogenic *COL4A4* variants were commonest in people of Latino (0.78%) and East Asian (0.70%) ancestries, and least common in Finns (0.10%) and Ashkenazim (0.18%) **(Table 4)**.

Most founder variants were found once only in any ancestral group, but there were also 7 more common *COL4A4* founder variants, which were all position 1 Gly substitutions (**Suppl Table 10**). These were mainly found in one population each including Africans (p.(Gly445Ala), Latinos (p.(Gly481Ser), East Asians (p.(Gly816Glu), non-Finnish Europeans (p.(Gly1178Ser), p.(Ser969Ter) and Others (p.(Gly774Arg)). No founder variants were found in Ashkenazim or Finns. p.(Ser969Ter) was common in Europeans, occurring in 18 alleles of the 280,956 examined or one in 15,608 individuals but otherwise no founder variants were frameshift or splicing variants.

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

Population frequencies of heterozygous predicted pathogenic COL4A3 and COL4A4 variants

The population frequency of heterozygous predicted pathogenic variants in *COL4A3* or *COL4A4* was 0.94% for all individuals (**Suppl Table 11**).

Heterozygous predicted pathogenic *COL4A3* and *COL4A4* variants were commonest in people of Latino (in 1.58%), East Asian (1.34%) or African (1.28%) ancestries, and least common in Finns (0.24%) and Ashkenazim (0.32%).

Association of heterozygous predicted pathogenic *COL4A3* and *COL4A4* variants in gnomAD with haematuria in the 100,000 Genomes Project dataset

Seventeen *COL4A3* and 27 *COL4A4* predicted pathogenic Gly substitutions found in gnomAD were also present in the 100,000 Genomes database. Fourteen individuals of the 2,221 with haematuria had one of these variants and 78 of the 37,200 without haematuria also had one (chi squared 14.17, p=0.0002) which indicated that these variants were associated with haematuria. This confirmed that the heterozygous predicted pathogenic *COL4A3* and *COL4A4* variants resulting in Gly substitutions found in in gnomAD were associated with haematuria.

Calculated population frequencies of compound heterozygous and digenic *COL4A3* and *COL4A4* variants

The population frequency of 0.94% for heterozygous predicted pathogenic *COL4A3* or *COL4A4* variants corresponded to about 0.9% of the population or one in 106 people.

The population frequency of two compound heterozygous predicted pathogenic variants in *COL4A3* or *COL4A4* was 1.13 x 10⁻⁵, or 0.001%, or 1 in 88,866 when the variants occurred independently.

The population frequency of a digenic predicted pathogenic *COL4A3* **and** a *COL4A4* variant was 2.23 x 10⁻⁵ or 0.002% or 1 in 44,793 if each variant were *in cis* or *in trans* and the variants occurred independently. Digenic predicted pathogenic variants in *COL4A5* plus *COL4A3* or *COL4A4* were much less common occurring in about one in 2,320 (for *COL4A5*) x one in 106 (for *COL4A3* or *COL4A4*) or one in 245,920 of the population.

Discussion

1 2 3

4

5

6

7 8

9

Previous estimates of the population frequency of X-linked Alport syndrome have differed¹³⁻¹⁵. but examination of a large variant database from people without known kidney disease predicted pathogenic COL4A5 variants in at least one in 2,320 individuals and heterozygous pathogenic COL4A3 or COL4A4 variants of one in 106. The accuracy of population frequencies for these variants is suggested by the consistency of predicted pathogenic 10 COL4A5 variants in a control subset, an overlapping cohort, and an independent dataset. 11 However the population frequencies of the corresponding diseases while directly related to the 12 prevalence of the predicted pathogenic COL4A3 - COL4A5 variants, must be corrected for the 13 penetrance of clinical features for individual variants. Penetrance probably depends on other 14 15 genetic and other factors, and we demonstrated for most COL4A5 variants that there were 16 mitigating features that explained why variants had not been detected previously. 17

18 The population frequency of one in 106 for heterozygous predicted pathogenic variants in 19 COL4A3 and COL4A4 corresponded to a population frequency for compound heterozygous 20 COL4A3 or COL4A4 variants of one in 88,866, and of digenic variants in each of COL4A3 and 21 COL4A4 of one in 44,793, and a lesser contribution from COL4A5 and COL4A3 or COL4A4. 22 23 The calculated frequency for compound heterozygous variants was less than expected for AR 24 Alport syndrome⁷ which previous reports have suggested affects one in 6 Alport families⁴⁷, or 25 one in 40,000 of the population ^{7,48}. Recessive Alport syndrome results from compound 26 heterozygous variants that occur by chance and from homozygous variants due to 27 consanguinity or consanguinity by descent which account for a further 30% of cases⁴². Thus 28 the overall population frequency for AR Alport syndrome must also take into account a further 29 30% from homozygous variants. Digenic COL4A3 – COL4A5 variants occur together by 30 31 chance and the calculated frequencies are more accurate. 32

33 These population frequencies of predicted pathogenic variants are still underestimates since 34 they do not include individuals with already diagnosed disease, with the large deletions or 35 deep intronic splicing variants that are not detected with Whole Exome Seguencing²³, or with 36 pathogenic non- Gly substitutions, that were not evaluated ^{12, 49}. 37

39 So what are the implications of these results for the prevalence of different modes of 40 inheritance of Alport syndrome? In general, pathogenic COL4A5 variants are highly penetrant 41 for haematuria and renal failure in males²⁰, and for haematuria in females²¹. This study only 42 examined high risk predicted pathogenic variants, that is, nonsense variants and position 1 Gly 43 substitutions, but even so, many had biochemical features that potentially mitigated the clinical 44 phenotype. 45

47 Interestingly, the population frequency of heterozygous predicted pathogenic COL4A3 and 48 COL4A4 variants approximated the 1% estimated from the prevalence of persistent 49 haematuria^{16, 17} and Thin membrane nephropathy in normal donor kidney biopsies¹⁸. 50 However the penetrance of persistent haematuria with COL4A3 and COL4A4 variants is about 51 70%⁷, and the penetrance of a thinned GBM, FSGS and renal impairment are not known. This 52 means that the population frequencies of Thin basement membrane nephropathy or AD Alport 53 54 syndrome deduced from the prevalence of heterozygous predicted pathogenic COL4A3 or 55 COL4A4 variants must be adjusted for the incomplete penetrance associated with these 56 variants. The prevalence of autosomal recessive Alport syndrome due to compound 57 heterozygous and of digenic Alport syndrome is probably affected less because haematuria 58 and renal impairment are more likely with two COL4A3 – COL4A5 variants ^{8, 50}. 59

60

38

24

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

3 Genetic testing is the most sensitive method for the detection of COL4A3 – 5 variants and 4 hence for detection of the different forms of Alport syndrome¹⁹. Examination of data from the 5 UK 100.000 Genomes Project confirmed that heterozygous predicted pathogenic position 1 6 Glv substitutions in COL4A5, COL4A3 or COL4A4 were each associated with haematuria and 7 that these Gly residues were critical domains. While some position 1 Gly substitutions in 8 9 COL4A3 – COL4A5 were not considered pathogenic and assertions from collagen I variants in 10 osteogenesis imperfecta suggest that nearby amino acids determine whether chain flexibility 11 from a non-Gly substitution is tolerated⁵¹. 12

13 The gnomAD and TOPMed datasets represented cohorts of individuals not known to have 14 kidney disease that were used to determine the population frequencies of predicted 15 pathogenic COL4A3 – COL4A5 variants. Sequencing was not available for all study 16 17 participants at each residue, and in general the population frequencies were calculated from 18 the mean number of alleles examined and the deduced number of individuals. However we 19 have cited the more conservative value of COL4A5 variants in the whole cohort. There were 20 also limitations in applying the ACMG/AMP criteria²⁴ to variants where clinical data were not 21 available, but while our strategy may have excluded some variants that were pathogenic, 22 these small numbers were unlikely to have significantly affected the overall frequencies. 23

25 The large number of undetected COL4A5 variants identified in gnomAD may be explained by 26 mitigating features that the associated clinical features were mild, such as haematuria or late 27 onset kidney failure without extrarenal features. Thus, predicted pathogenic variants were 28 found twice as often in women, which was consistent with XL inheritance, but different from 29 the female representation in most previous reports¹²⁻¹⁴. Affected women often have only 30 haematuria, but identifying affected women is still important because of their own risk of end-31 32 stage kidney failure, because half their sons develop kidney failure²², and because treatment 33 is effective⁵². Most other COL4A5 variants identified in gnomAD were associated with a 34 clinically-mitigating feature such as location in the amino terminus or adjacent to an 35 interruption, or a Gly substitution with Ala, Ser or Cys. 36

37 This study also demonstrated that the population frequencies of predicted pathogenic COL4A3 38 - COL4A5 variants varied in people of different ancestries. Predicted pathogenic variants in 39 COL4A5 were more common in people from a European or African background, present at a 40 41 low level in Ashkenazim and absent from Finns. This was consistent with the previously-42 reported low population frequency in Finns¹⁵. In addition, heterozygous predicted pathogenic 43 COL4A3 and COL4A4 variants affected more than 1% of people of Latino, African and East 44 Asian ancestries, which was at least four times more common than in Ashkenazim and Finns. 45 It may not be that COL4A3 - COL4A5 variants are more common in some ancestries but 46 47 rather that they are uncommon in others due to geographic and cultural isolation⁵³. 48

49 In conclusion, predicted pathogenic COL4A5 variants occur at least one in 2.320 of the 50 population but are often unrecognised. Heterozygous predicted pathogenic COL4A3 or 51 COL4A4 variants occur in at least one in 106 of the population. The true prevalence of 52 potentially pathogenic COL4A3 - COL4A5 variants is even greater since they must also 53 include already-diagnosed disease, variants that were not detected with exomic sequencing as 54 well as non-Gly substitutions. However the prevalence of the different forms of inheritance of 55 56 Alport syndrome depends on the penetrance of haematuria and renal impairment with these 57 variants. Future studies should address penetrance of these clinical features. 58

Author contributions

JG undertook the initial analysis and made major contributions to the initial draft. RF, LB, VI, AP and HS devised the list of interruptions, provided associated disease phenotypes, and helped in the assessments of predicted pathogenicity. MMYC, OSA and DPG helped with the acquisition of data, analysis and interpretation of data, and with revisions. VI, AP and HS also contributed to the acquisition of data, analysis and interpretation of data. JS designed the study, undertook some of the analysis, and drafted and revised the manuscript. All authors contributed to the writing, have approved the final submission and agree to be accountable for the data. JG undertook this study while an undergraduate student at the University of Melbourne.

Disclosures

D. Gale reports Honoraria from Alexion, Otsuka; and Other Interests/Relationships as a Trustee for AlportUK. J. Savige reports Other Interests/Relationships with Alport Foundation Australia, and the PKD Australia Scientific Board. L. Burnett reports Research Funding from Takeda (Shire): Investigator Initiated Grant for genomic screening of Gaucher disease Scientific Advisor or Membership as a Member of Genetics Advisory Committee, Royal College of Pathologists of Australasia (RCPA), Member of Genetics Services Executive Committee, NSW Health Genetics Network, Member of Community Genetics NSW Advisory Committee, These roles are honorary; Other Interests/Relationships as a Member of KidGen Renal Genetics Flagship of Australian Genomics, Member of CIRCA Clinical Immunogenomics Research Consortium Australasia, Non-Executive Director, AACB Services Pty Ltd, Australasian Association of Clinical Biochemists, These roles are honorary. The remaining authors have no disclosures.

Acknowledgements

The authors would like to thank the Genome Aggregation Database (gnomAD) and the groups that provided exome and genome variant data to this resource. A full list of contributing groups can be found at http://gnomad.broadinstitute.org/about. The authors would like to thank the NHLBI GO Exome Sequencing Project and its ongoing studies that produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010). Finally, the authors would also like to thank the hosts of the many websites used to evaluate variants for predicted pathogenicity, Varsome in particular, and the LOVD database, its contributors and administrators.

This research was also made possible through access to the data and findings generated by
 the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics
 England Limited (a wholly owned company of the Department of Health and Social Care). The
 100,000 Genomes Project is funded by the National Institute for Health Research and NHS
 England. The Wellcome Trust, Cancer Research UK and the Medical Research council have
 also funded research infrastructure. The 100,000 Genomes Project uses data provided by
 patients and collected by the National Health Service as part of their care and support.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

References

- 1. Gubler, M, Levy, M, Broyer, M, Naizot, C, Gonzales, G, Perrin, D, Habib, R: Alport's syndrome. A report of 58 cases and a review of the literature. *Am J Med*, 70: 493-505, 1981.
 - Barker, DF, Hostikka, SL, Zhou, J, Chow, LT, Oliphant, AR, Gerken, SC, Gregory, MC, Skolnick, MH, Atkin, CL, Tryggvason, K: Identification of mutations in the COL4A5 collagen gene in Alport syndrome. *Science*, 248: 1224-1227, 1990.
- Mochizuki, T, Lemmink, HH, Mariyama, M, Antignac, C, Gubler, MC, Pirson, Y, Verellen-Dumoulin, C, Chan, B, Schroder, CH, Smeets, HJ, et al.: Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. *Nat Genet*, 8: 77-81, 1994.
- 4. Buzza, M, Wilson, D, Savige, J: Segregation of hematuria in thin basement membrane disease with haplotypes at the loci for Alport syndrome. *Kidney Int,* 59: 1670-1676, 2001.
- 5. Buzza, M, Dagher, H, Wang, YY, Wilson, Ď, Babon, JJ, Cotton, RG, Savige, J: Mutations in the COL4A4 gene in thin basement membrane disease. *Kidney Int*, 63: 447-453, 2003.
- 6. Savige, J: Should We Diagnose Autosomal Dominant Alport Syndrome When There Is a Pathogenic Heterozygous COL4A3 or COL4A4 Variant? *Kidney Int Rep*, 3: 1239-1241, 2018.
- 7. Savige, J, Rana, K, Tonna, S, Buzza, M, Dagher, H, Wang, YY: Thin basement membrane nephropathy. *Kidney Int,* 64: 1169-1178, 2003.
- Mencarelli, MA, Heidet, L, Storey, H, van Geel, M, Knebelmann, B, Fallerini, C, Miglietti, N, Antonucci, MF, Cetta, F, Sayer, JA, van den Wijngaard, A, Yau, S, Mari, F, Bruttini, M, Ariani, F, Dahan, K, Smeets, B, Antignac, C, Flinter, F, Renieri, A: Evidence of digenic inheritance in Alport syndrome. *J Med Genet*, 52: 163-174, 2015.
- Voskarides, K, Damianou, L, Neocleous, V, Zouvani, I, Christodoulidou, S, Hadjiconstantinou, V, Ioannou, K, Athanasiou, Y, Patsias, C, Alexopoulos, E, Pierides, A, Kyriacou, K, Deltas, C: COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. *J Am Soc Nephrol,* 18: 3004-3016, 2007.
- 10. Wickman, L, Hodgin, JB, Wang, SQ, Afshinnia, F, Kershaw, D, Wiggins, RC: Podocyte Depletion in Thin GBM and Alport Syndrome. *PLoS One*, 11: e0155255, 2016.
- 11. Baldovino, S, Moliner, AM, Taruscio, D, Daina, E, Roccatello, D: Rare Diseases in Europe: from a Wide to a Local Perspective. *Isr Med Assoc J*, 18: 359-363, 2016.
- 12. Hertz, JM, Thomassen, M, Storey, H, Flinter, F: Clinical utility gene card for: Alport syndrome update 2014. *Eur J Hum Genet*, 23, 2015.
- 13. Hasstedt, SJ, Atkin, CL: X-linked inheritance of Alport syndrome: family P revisited. Am J Hum Genet, 35: 1241-1251, 1983.
- 14. Persson, U, Hertz, JM, Wieslander, J, Segelmark, M: Alport syndrome in southern Sweden. *Clin Nephrol,* 64: 85-90, 2005.
- 15. Pajari, H, Kaariainen, H, Muhonen, T, Koskimies, O: Alport's syndrome in 78 patients: epidemiological and clinical study. *Acta Paediatr,* 85: 1300-1306, 1996.
- 16. Dodge, WF, West, EF, Smith, EH, Bruce, H, 3rd: Proteinuria and hematuria in schoolchildren: epidemiology and early natural history. *J Pediatr*, 88: 327-347, 1976.
- 17. Ritchie, CD, Bevan, EA, Collier, SJ: Importance of occult haematuria found at screening. *Br Med J (Clin Res Ed)*, 292: 681-683, 1986.
- Dische, FE, Anderson, VE, Keane, SJ, Taube, D, Bewick, M, Parsons, V: Incidence of thin membrane nephropathy: morphometric investigation of a population sample. J Clin Pathol, 43: 457-460, 1990.
- 19. Savige, J, Gregory, M, Gross, O, Kashtan, C, Ding, J, Flinter, F: Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. *J Am Soc Nephrol*, 24: 364-375, 2013.
- 20. Jais, JP, Knebelmann, B, Giatras, I, De Marchi, M, Rizzoni, G, Renieri, A, Weber, M, Gross, O, Netzer, KO, Flinter, F, Pirson, Y, Verellen, C, Wieslander, J, Persson, U, Tryggvason, K, Martin, P, Hertz, JM, Schroder, C, Sanak, M, Krejcova, S, Carvalho, MF, Saus, J, Antignac, C, Smeets, H, Gubler, MC: Xlinked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol, 11: 649-657, 2000.
- 21. Jais, JP, Knebelmann, B, Giatras, I, De Marchi, M, Rizzoni, G, Renieri, A, Weber, M, Gross, O, Netzer, KO, Flinter, F, Pirson, Y, Dahan, K, Wieslander, J, Persson, U, Tryggvason, K, Martin, P, Hertz, JM, Schroder, C, Sanak, M, Carvalho, MF, Saus, J, Antignac, C, Smeets, H, Gubler, MC: X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study. *J Am Soc Nephrol*, 14: 2603-2610, 2003.

Savige, J, Colville, D, Rheault, M, Gear, S, Lennon, R, Lagas, S, Finlay, M, Flinter, F: Alport Syndrome in Women and Girls. *Clin J Am Soc Nephrol*, 11: 1713-1720, 2016.

- Savige, J, Ariani, F, Mari, F, Bruttini, M, Renieri, A, Gross, O, Deltas, C, Flinter, F, Ding, J, Gale, DP, Nagel, M, Yau, M, Shagam, L, Torra, R, Ars, E, Hoefele, J, Garosi, G, Storey, H: Expert consensus guidelines for the genetic diagnosis of Alport syndrome. *Pediatr Nephrol*, 2018.
- 24. Richards, S, Aziz, N, Bale, S, Bick, D, Das, S, Gastier-Foster, J, Grody, WW, Hegde, M, Lyon, E, Spector, E, Voelkerding, K, Rehm, HL, Committee, ALQA: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med*, 17: 405-424, 2015.
- 25. Myllyharju, J, Kivirikko, KI: Collagens and collagen-related diseases. Ann Med, 33: 7-21, 2001.
- 26. Savige, J, Storey, H, Watson, E, Hertz, JM, Deltas, C, Renieri, A, Mari, F, Hilbert, P, Plevova, P, Byers, P, Cerkauskaite, A, Gregory, M, Cerkauskiene, R, Ljubanovic, DG, Becherucci, F, Errichiello, C, Massella, L, Aiello, V, Lennon, R, Hopkinson, L, Koziell, A, Lungu, A, Rothe, HM, Hoefele, J, Zacchia, M, Martic, TN, Gupta, A, van Eerde, A, Gear, S, Landini, S, Palazzo, V, Al-Rabadi, L, Claes, K, Corveleyn, A, Van Hoof, E, van Geel, M, Williams, M, Ashton, E, Belge, H, Ars, E, Bierzynska, A, Gangemi, C, Lipska-Zietkiewicz, BS: Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. *Eur J Hum Genet*, 2021.
- 27. Mariyama, M, Leinonen, A, Mochizuki, T, Tryggvason, K, Reeders, ST: Complete primary structure of the human alpha 3(IV) collagen chain. Coexpression of the alpha 3(IV) and alpha 4(IV) collagen chains in human tissues. *J Biol Chem*, 269: 23013-23017, 1994.
- Leinonen, A, Mariyama, M, Mochizuki, T, Tryggvason, K, Reeders, ST: Complete primary structure of the human type IV collagen alpha 4(IV) chain. Comparison with structure and expression of the other alpha (IV) chains. *J Biol Chem*, 269: 26172-26177, 1994.
- 29. Zhou, J, Hertz, JM, Leinonen, A, Tryggvason, K: Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient. *J Biol Chem*, 267: 12475-12481, 1992.
- 30. Demosthenous, P, Voskarides, K, Stylianou, K, Hadjigavriel, M, Arsali, M, Patsias, C, Georgaki, E, Zirogiannis, P, Stavrou, C, Daphnis, E, Pierides, A, Deltas, C, Hellenic Nephrogenetics Research, C: X-linked Alport syndrome in Hellenic families: phenotypic heterogeneity and mutations near interruptions of the collagen domain in COL4A5. *Clin Genet*, 81: 240-248, 2012.
- 31. Lanktree, MB, Haghighi, A, Guiard, E, Iliuta, IA, Song, X, Harris, PC, Paterson, AD, Pei, Y: Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J Am Soc Nephrol, 29: 2593-2600, 2018.
- 32. Lek, M, Karczewski, KJ, Minikel, EV, Samocha, KE, Banks, E, Fennell, T, O'Donnell-Luria, AH, Ware, JS, Hill, AJ, Cummings, BB, Tukiainen, T, Birnbaum, DP, Kosmicki, JA, Duncan, LE, Estrada, K, Zhao, F, Zou, J, Pierce-Hoffman, E, Berghout, J, Cooper, DN, Deflaux, N, DePristo, M, Do, R, Flannick, J, Fromer, M, Gauthier, L, Goldstein, J, Gupta, N, Howrigan, D, Kiezun, A, Kurki, MI, Moonshine, AL, Natarajan, P, Orozco, L, Peloso, GM, Poplin, R, Rivas, MA, Ruano-Rubio, V, Rose, SA, Ruderfer, DM, Shakir, K, Stenson, PD, Stevens, C, Thomas, BP, Tiao, G, Tusie-Luna, MT, Weisburd, B, Won, HH, Yu, D, Altshuler, DM, Ardissino, D, Boehnke, M, Danesh, J, Donnelly, S, Elosua, R, Florez, JC, Gabriel, SB, Getz, G, Glatt, SJ, Hultman, CM, Kathiresan, S, Laakso, M, McCarroll, S, McCarthy, MI, McGovern, D, McPherson, R, Neale, BM, Palotie, A, Purcell, SM, Saleheen, D, Scharf, JM, Sklar, P, Sullivan, PF, Tuomilehto, J, Tsuang, MT, Watkins, HC, Wilson, JG, Daly, MJ, MacArthur, DG, Exome Aggregation, C: Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, 536: 285-291, 2016.
- 33. The National Genomics Research and Healthcare Knowledgebase v5, Genomics England. 5, 2019.
- 34. van der Ven, AT, Connaughton, DM, Ityel, H, Mann, N, Nakayama, M, Chen, J, Vivante, A, Hwang, DY, Schulz, J, Braun, DA, Schmidt, JM, Schapiro, D, Schneider, R, Warejko, JK, Daga, A, Majmundar, AJ, Tan, W, Jobst-Schwan, T, Hermle, T, Widmeier, E, Ashraf, S, Amar, A, Hoogstraaten, CA, Hugo, H, Kitzler, TM, Kause, F, Kolvenbach, CM, Dai, R, Spaneas, L, Amann, K, Stein, DR, Baum, MA, Somers, MJG, Rodig, NM, Ferguson, MA, Traum, AZ, Daouk, GH, Bogdanovic, R, Stajic, N, Soliman, NA, Kari, JA, El Desoky, S, Fathy, HM, Milosevic, D, Al-Saffar, M, Awad, HS, Eid, LA, Selvin, A, Senguttuvan, P. Sanna-Cherchi, S, Rehm, HL, MacArthur, DG, Lek, M, Laricchia, KM, Wilson, MW, Mane, SM, Lifton, RP, Lee, RS, Bauer, SB, Lu, W, Reutter, HM, Tasic, V, Shril, S, Hildebrandt, F: Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol, 29: 2348-2361, 2018.
- St. Kelly, MA, Caleshu, C, Morales, A, Buchan, J, Wolf, Z, Harrison, SM, Cook, S, Dillon, MW, Garcia, J,
 Haverfield, E, Jongbloed, JDH, Macaya, D, Manrai, A, Orland, K, Richard, G, Spoonamore, K, Thomas,
 M, Thomson, K, Vincent, LM, Walsh, R, Watkins, H, Whiffin, N, Ingles, J, van Tintelen, JP, Semsarian, C,
 Ware, JS, Hershberger, R, Funke, B: Adaptation and validation of the ACMG/AMP variant classification
 framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited
 Cardiomyopathy Expert Panel. *Genet Med*, 20: 351-359, 2018.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

- 36. Biesecker, LG, Harrison, SM, ClinGen Sequence Variant Interpretation Working, G: The ACMG/AMP reputable source criteria for the interpretation of sequence variants. *Genet Med*, 20: 1687-1688, 2018.
 - Richards, CS, Aziz, N, Bale, S, Bick, D, Das, S, Gastier-Foster, J, Grody, WW, Hegde, M, Lyon, E, Spector, E, Voelkerding, K, Rehm, HL, Group, AAIoSVW: Response to Biesecker and Harrison. *Genet Med*, 20: 1689-1690, 2018.
- 38. Abou Tayoun, AN, Pesaran, T, DiStefano, MT, Oza, A, Rehm, HL, Biesecker, LG, Harrison, SM, ClinGen Sequence Variant Interpretation Working, G: Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. *Hum Mutat*, 39: 1517-1524, 2018.
- 39. Hashimura, Y, Nozu, K, Kaito, H, Nakanishi, K, Fu, XJ, Ohtsubo, H, Hashimoto, F, Oka, M, Ninchoji, T, Ishimori, S, Morisada, N, Matsunoshita, N, Kamiyoshi, N, Yoshikawa, N, Iijima, K: Milder clinical aspects of X-linked Alport syndrome in men positive for the collagen IV alpha5 chain. *Kidney Int,* 85: 1208-1213, 2014.
- 40. Savige, J, Storey, H, II Cheong, H, Gyung Kang, H, Park, E, Hilbert, P, Persikov, A, Torres-Fernandez, C, Ars, E, Torra, R, Hertz, JM, Thomassen, M, Shagam, L, Wang, D, Wang, Y, Flinter, F, Nagel, M: X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations. *PLoS One*, 11: e0161802, 2016.
- Persikov, AV, Pillitteri, RJ, Amin, P, Schwarze, U, Byers, PH, Brodsky, B: Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. *Hum Mutat*, 24: 330-337, 2004.
- 42. Storey, H, Savige, J, Sivakumar, V, Abbs, S, Flinter, FA: COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. *J Am Soc Nephrol,* 24: 1945-1954, 2013.
- 43. Slajpah, M, Gorinsek, B, Berginc, G, Vizjak, A, Ferluga, D, Hvala, A, Meglic, A, Jaksa, I, Furlan, P, Gregoric, A, Kaplan-Pavlovcic, S, Ravnik-Glavac, M, Glavac, D: Sixteen novel mutations identified in COL4A3, COL4A4, and COL4A5 genes in Slovenian families with Alport syndrome and benign familial hematuria. *Kidney Int*, 71: 1287-1295, 2007.
- 44. Macheroux, EP, Braunisch, MC, Pucci Pegler, S, Satanovskij, R, Riedhammer, KM, Gunthner, R, Gross, O, Nagel, M, Renders, L, Hoefele, J: The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe Phenotype in a Family With X-Linked Alport Syndrome. *Front Pediatr*, **7:** 485, 2019.
- 45. Zurowska, AM, Bielska, O, Daca-Roszak, P, Jankowski, M, Szczepanska, M, Roszkowska-Bjanid, D, Kuzma-Mroczkowska, E, Panczyk-Tomaszewska, M, Moczulska, A, Drozdz, D, Hadjipanagi, D, Deltas, C, Ostalska-Nowicka, D, Rabiega, A, Taraszkiewicz, J, Taranta-Janusz, K, Wieczorkiewicz-Plaza, A, Jobs, K, Mews, J, Musial, K, Jakubowska, A, Nosek, H, Jander, AE, Koutsofti, C, Stanislawska-Sachadyn, A, Kuleszo, D, Zietkiewicz, E, Lipska-Zietkiewicz, BS: Mild X-linked Alport syndrome due to the COL4A5 G624D variant originating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in midlife. *Kidney Int*, 2020.
- 46. AM, Z: Mild X-linked Alport syndrome due to the COL4A5 G624D variant origtinating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in mid-life. *Kidney Int*, 2021.
- 47. Feingold, J, Bois, E, Chompret, A, Broyer, M, Gubler, MC, Grunfeld, JP: Genetic heterogeneity of Alport syndrome. *Kidney Int*, 27: 672-677, 1985.
- 48. Lemmink, HH, Nillesen, WN, Mochizuki, T, Schroder, CH, Brunner, HG, van Oost, BA, Monnens, LA, Smeets, HJ: Benign familial hematuria due to mutation of the type IV collagen alpha4 gene. *J Clin Invest*, 98: 1114-1118, 1996.
- 49. Persikov, AV, Ramshaw, JA, Kirkpatrick, A, Brodsky, B: Amino acid propensities for the collagen triple-helix. *Biochemistry,* 39: 14960-14967, 2000.
- 50. Fallerini, C, Baldassarri, M, Trevisson, E, Morbidoni, V, La Manna, A, Lazzarin, R, Pasini, A, Barbano, G, Pinciaroli, AR, Garosi, G, Frullanti, E, Pinto, AM, Mencarelli, MA, Mari, F, Renieri, A, Ariani, F: Alport syndrome: impact of digenic inheritance in patients management. *Clin Genet*, 92: 34-44, 2017.
- 51. Makareeva, E, Mertz, EL, Kuznetsova, NV, Sutter, MB, DeRidder, AM, Cabral, WA, Barnes, AM, McBride, DJ, Marini, JC, Leikin, S: Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem, 283: 4787-4798, 2008.
- 52. Gross, O, Licht, C, Anders, HJ, Hoppe, B, Beck, B, Tonshoff, B, Hocker, B, Wygoda, S, Ehrich, JH, Pape, L, Konrad, M, Rascher, W, Dotsch, J, Muller-Wiefel, DE, Hoyer, P, Study Group Members of the Gesellschaft fur Padiatrische, N, Knebelmann, B, Pirson, Y, Grunfeld, JP, Niaudet, P, Cochat, P, Heidet, L, Lebbah, S, Torra, R, Friede, T, Lange, K, Muller, GA, Weber, M: Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. *Kidney Int,* 81: 494-501, 2012.
- 53. Kaariainen, H, Muilu, J, Perola, M, Kristiansson, K: Genetics in an isolated population like Finland: a different basis for genomic medicine? *J Community Genet*, 8: 319-326, 2017.
- 59 basis for genomic medicine? *J Community* 60 54. Kashtan, CE: Alport Syndrome. Gene Reviews

- In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1207/</u>. 2001.
- 55. Pierides, A, Voskarides, K, Athanasiou, Y, Ioannou, K, Damianou, L, Arsali, M, Zavros, M, Pierides, M, Vargemezis, V, Patsias, C, Zouvani, I, Elia, A, Kyriacou, K, Deltas, C: Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. *Nephrol Dial Transplant,* 24: 2721-2729, 2009.

Page 22 of 63

- 56. Matthaiou, M, Poulii, T, Matthaiou, M, Matthaiou, M, Poulli, T, Deltas, C: Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by *COL4A3* or *COL4A4* mutations: a systematic review. *Clinical Kidney Journal* 1-12, 2020.
- 57. Gillion, V, Dahan, K, Cosyns, JP, Hilbert, P, Jadoul, M, Goffin, E, Godefroid, N, De Meyer, M, Mourad, M, Pirson, Y, Kanaan, N: Genotype and Outcome After Kidney Transplantation in Alport Syndrome. *Kidney Int Rep*, 3: 652-660, 2018.
- 58. Groopman, EE, Marasa, M, Cameron-Christie, S, Petrovski, S, Aggarwal, VS, Milo-Rasouly, H, Li, Y, Zhang, J, Nestor, J, Krithivasan, P, Lam, WY, Mitrotti, A, Piva, S, Kil, BH, Chatterjee, D, Reingold, R, Bradbury, D, DiVecchia, M, Snyder, H, Mu, X, Mehl, K, Balderes, O, Fasel, DA, Weng, C, Radhakrishnan, J, Canetta, P, Appel, GB, Bomback, AS, Ahn, W, Uy, NS, Alam, S, Cohen, DJ, Crew, RJ, Dube, GK, Rao, MK, Kamalakaran, S, Copeland, B, Ren, Z, Bridgers, J, Malone, CD, Mebane, CM, Dagaonkar, N, Fellstrom, BC, Haefliger, C, Mohan, S, Sanna-Cherchi, S, Kiryluk, K, Fleckner, J, March, R, Platt, A, Goldstein, DB, Gharavi, AG: Diagnostic Utility of Exome Sequencing for Kidney Disease. *N Engl J Med*, 380: 142-151, 2019.
- 59. Fallerini, C, Dosa, L, Tita, R, Del Prete, D, Feriozzi, S, Gai, G, Clementi, M, La Manna, A, Miglietti, N, Mancini, R, Mandrile, G, Ghiggeri, GM, Piaggio, G, Brancati, F, Diano, L, Frate, E, Pinciaroli, AR, Giani, M, Castorina, P, Bresin, E, Giachino, D, De Marchi, M, Mari, F, Bruttini, M, Renieri, A, Ariani, F: Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. *Clin Genet*, 86: 252-257, 2014.
- 60. Bullich, G, Domingo-Gallego, A, Vargas, I, Ruiz, P, Lorente-Grandoso, L, Furlano, M, Fraga, G, Madrid, A, Ariceta, G, Borregan, M, Pinero-Fernandez, JA, Rodriguez-Pena, L, Ballesta-Martinez, MJ, Llano-Rivas, I, Menica, MA, Ballarin, J, Torrents, D, Torra, R, Ars, E: A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. *Kidney Int,* 94: 363-371, 2018.
- 61. Gross, O, Tonshoff, B, Weber, LT, Pape, L, Latta, K, Fehrenbach, H, Lange-Sperandio, B, Zappel, H, Hoyer, P, Staude, H, Konig, S, John, U, Gellermann, J, Hoppe, B, Galiano, M, Hoecker, B, Ehren, R, Lerch, C, Kashtan, CE, Harden, M, Boeckhaus, J, Friede, T, German Pediatric Nephrology Study, G, Investigators, EP-TA: A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome. *Kidney Int*, 97: 1275-1286, 2020.
- 62. Hertz, JM, Juncker, I, Persson, U, Matthijs, G, Schmidtke, J, Petersen, MB, Kjeldsen, M, Gregersen, N: Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport syndrome. *Hum Mutat*, 18: 141-148, 2001.
- 63. Plant, KE, Green, PM, Vetrie, D, Flinter, FA: Detection of mutations in COL4A5 in patients with Alport syndrome. *Hum Mutat,* 13: 124-132, 1999.
- 64. King, K, Flinter, FA, Green, PM: A two-tier approach to mutation detection in the COL4A5 gene for Alport syndrome. *Hum Mutat*, 27: 1061, 2006.
- 65. Cruz-Robles, D, Garcia-Torres, R, Antignac, C, Forestier, L, de la Puente, SG, Correa-Rotter, R, Garcia-Lopez, E, Orozco, L: Three novel mutations in the COL4A5 gene in Mexican Alport syndrome patients. *Clin Genet*, 56: 242-243, 1999.
- 66. Bekheirnia, MR, Reed, B, Gregory, MC, McFann, K, Shamshirsaz, AA, Masoumi, A, Schrier, RW: Genotype phenotype correlation in X-linked Alport syndrome. *J Am Soc Nephrol*, 21: 876-883, 2010.
- 67. Mohammad, M, Nanra, R, Colville, D, Trevillian, P, Wang, Y, Storey, H, Flinter, F, Savige, J: A female with Xlinked Alport syndrome and compound heterozygous COL4A5 mutations. *Pediatr Nephrol,* 29: 481-485, 2014.
- 68. Knebelmann, B, Breillat, C, Forestier, L, Arrondel, C, Jacassier, D, Giatras, I, Drouot, L, Deschenes, G, Grunfeld, JP, Broyer, M, Gubler, MC, Antignac, C: Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. *Am J Hum Genet*, 59: 1221-1232, 1996.
- 69. Inoue, Y, Nishio, H, Shirakawa, T, Nakanishi, K, Nakamura, H, Sumino, K, Nishiyama, K, Iijima, K, Yoshikawa, N: Detection of mutations in the COL4A5 gene in over 90% of male patients with X-linked Alport's syndrome by RT-PCR and direct sequencing. *Am J Kidney Dis,* 34: 854-862, 1999.

Copyright 2021 by ASN	, Published Ahead of Print	on 6/18/21, Accepted/U	nedited version

 Zhang, H, Ding, J, Wang, F, Zhao, D: Mutation detection of COL4An gene based on mRNA of peripheral blood lymphocytes and prenatal diagnosis of Alport syndrome in China. *Nephrology (Carlton)*, 16: 377-380, 2011.

Table 1: Association of predicted pathogenic COL4A3 – COL4A5 variants resulting in position 1 Gly substitutions with haematuria in 100,000 Genomes Project database

Gene	Number of variants resulting in position 1 Gly	Number of variants resulting in position 1 Gly	Number of ind a predicted p position 1 Gly	athogenic	Chi-square (with Yate's correction), two-tailed p value
	substitutions in 100,000 Genomes Project	substitutions excluded after filtering	In total with haematuria (n=2,221)	In total without haematuria (n=37,200)	
COL4A5	20	1 (5%)	12	9	95.83, p<0.0001
COL4A3	87	14 (16%)	21	85	37.54, p<0.0001
COL4A4	84	13 (15%)	19	95	24.14, p<0.0001

Table 2: Assessment of COL4A5 variants in the gnomAD database and gnomAD control subset

				Tota	l gnon	nAD data	base					AD control ubset
Position hg19 and Protein consequenc e	Transcri pt	Affected individual s gender, total alleles	PP2	SIFT	МТ	Conserve d	Previously reported; alternative pathogenic residue (LOVD)	Clin Var	Pathogenicity (Varsome)	Patho- genicity (Alamut)	Evidenc e support s patho- genicity	Affected individuals gender, tota alleles
107783018 p.(Gly42Ser)	c.124G> A	1M, 21,780	0	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1, PM2, PP2,PP3	Weak	NO	
107783019 p.(Gly42Ala)	c.125G> C	1F, 182,802	0.003	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	NO	1F, 80,278
107783019 p.(Gly42Asp)	c.125G> A	1F, 182,802	0.739	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	NO	
107802357 p.(Gly69Arg)	c.205G> C	1F, 183,072	0.01	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1F)	
107807131 p.(Gly84Glu)	c.251G> A	1F, 182,367	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PM5,PP 2, PP3	Strong	YES (1F)	
107811896 p.(Gly105Ala)	c.314G> C	1M, 183,404	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Moderat e	YES (1M)	1M, 80,333
107812008 p.(Gly114Ala)	c.341G> C	1F, 183,513	1	Del	DC	Gly	NO, but p.(Gly114Arg) reported in LOVD	Not found	Likely pathogenic, PM1,PM2,PM5,PP 2, PP3	Moderat e	YES (1F)	1F, 80,345
107812044 p.(Gly126Glu)	c.377G> A	1F, 21,871	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Moderat e	YES (1F)	1F, 7600
107814670 p.(Gly138Ser)	c.412G> A	1F, 183,271	1	Tol	DC	Gly	YES Fallerini, 2014 ⁵⁹ ; and p(Gly138Asp)	(no	Likely pathogenic, PM1, PM2,PM5,PP2,PP 3, PP%	Weak	NO	

Journal of the American Society of Nephrology

							in LOVD	on criteria)				
107819195 p.(Gly201Ala)	c.602G> C	1M, 168,800	0.999	Del	DC	Gly	NO, but p(Gly201Val), Hertz 2001 ⁶²	Not found	Likely pathogenic, PM1,PM2,PM5,PP 2,PP3	Moderat e	YES (1M)	
107823808 p.(Gly276Ser)	c.826G> A	1F, 183,230	1	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak		1F, 80,319
107823912 p.(Gly279Arg)	c.835G> C	1M, 183,017	1	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Moderat e	NO	
107823913 p.(Gly279Ala)	c.836G> C	1M, 183,034	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1M)	1M, 80,323
p.(Gly283Val)	c.848G> T	1F, 183,010	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1F)	
p.(Gly286Cys)	c.856G> T	1F, 182,986	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1F)	1F, 80,324
107829879 p.(Gly356Ala)	c.1067G >C	1F, 21,220	0.997	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1F)	
107829879 p.(Gly356Glu)	c.1067G >A	1M, 183,308	0.99	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1M)	
p.(Gly512Glu)	c.1535G >A	1M, 145,435	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1M)	
107840625 p.(Gly536Ser)	c.1606G >A	1F, 183,226	1	Del	DC	Gly	NO, but p(Gly536Asp) p(Gly536Val), in LOVD		Likely pathogenic, PM1,PM2, PM5,PP2,PP3	Strong	YES (1F)	
107844640 p.(Gly624Asp)	c.1871G >A	4M,12F, 182,998	1	Del	DC	Gly	YES Slajpah, 2007 ⁴³	Pathog enic **	Likely pathogenic PM1,PP2,PP3 and PP5	Strong	YES (4M,12F)	2M, 6F, 80,268
107842028 p.(Gly626Ser)	c.1876G >A	2M,5F, 204,674	1	Del	DC	Gly	YES Hertz, 2001 ⁶²	Likely benign *	Likely pathogenic, PM1,PM2,PM5,PP 2,PP3, BP6	Strong	NO	1M, 4F, 87,809
107844640	c.1966G	1M,	1	Del	DC	Gly	NO	Not	Likely pathogenic,	Strong	YES	

p.(Gly656Ser)	>A	181,478						found	PM1,PM2,PP2,PP 3		(1M)	
107845177 p.(Gly702Ser)	c.2104G >A	1F, 129,179	1	Del	DC	Gly	NO, but p(Gly702Val), in LOVD (VUS)	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (1F)	1M, 55,168
107846274 p.(Gly743Ser)	c.2227G >A	2F, 148,007	1	Del	DC	Gly	NO, but p.(Gly743Asp) Plant, 1999 ⁶³	Not found	Likely pathogenic, PM1,PM2, PM5,PP2,PP3	Weak	NO	2F, 63,637
107849982 p.(Gly752Val)	c.2255G >T	2M, 183,227	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Strong	YES (2M)	
107850087 p.(Gly787Ala)	c.2360G >C	1F, 183,169	1	Del	DC	Gly	NO, but p(Gly787V al), King 2006 ⁶⁴	Not found	Likely pathogenic, PM1,PM2, PM5,PP2,PP3	Strong	YES (1F)	
107858210 p.(Gly822Glu)	c.2465G >A	1M, 182,957	1	Del	DC	Gly	NO, but p(Gly822Ar g), Cruz- Robles, 1999 ⁶⁵	Not found	Likely pathogenic, PM1,PM2, PM5,PP2,PP3	Strong	YES (1M)	
107865033 p.(Gly893Val)	c.2678G >T	1F, 180,196	1	Del	DC	Gly	YES Bekheimia, 2010 ⁶⁶ , and p(Gly893Arg) Mohamma d, 2014 ⁶⁷	Pathogenic (no assertion criteria)	Likely pathogenic, PM1,PM2, PM5,PP2,PP3,PP 5	Weak	YES (1F)	
p.(Gly953Val)	c.2858G >T	249M, 442F, 204,819	1	Del	Ρ	Gly	YES Knebelmann 1996 ⁶⁸	Conflict ing interpre tation, B, LB, VUS	Benign, PM1,PP2,PP3,BS 1,BS2	Benign	NO	125M,23 87,876
107866020 p.(Gly961Val)	c.2882G >T	2M,3F, 182,593	0.001	Del	Р	Gly	NO	Not found	Variant of Uncertain Significance, PM1,PP2,BP4	Weak	NO	1M, 1F 80,233
107866037 p.(Gly967Arg)	c.2899G >A	1F, 181,344	1	Del	DC	Gly	NO	Not found	Likely pathogenic,PM1,P	Moderat e	YES (1F)	

									M2,PP2,PP3			
107869494 p(Gly1054As p)	c.3161G >A	1M, 183,204	1	Del	DC	Gly	LOVD	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Moderat e	YES (1M)	
107869553 p(Gly1074Ar g)	c.3220G >C	1M, 183,246	0.073	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	NO	
107869553 p.(Gly1074Se r)	c.3220G >A	4M,3F, 204,841	0.129	Del	DC	Gly	NO	Not found	Variant of Uncertain Significance, PM1,PP2,PP3, BS2	Weak	NO	1M,2F, 80,317
p.(Gly1134Cy s)	c.3400G >T	1F, 180,336	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1F)	1F, 79,040
p.(Gly1170Se r)	c.3508G >A	1F, 174,685	1	Del	DC	Gly	YES Inoue, 1999 ⁶⁹	Patho- genic (no asserti on criteria)	Pathogenic, PS1,PM1,PM2,PM 5,PP2,PP3,PP5	Weak	YES (1F)	1F, 76,459
107909824 p.(Gly1185Se r)	c.3553G >A	1F, 159,615	0.99	Del	DC	Gly	NO	Not found	Pathogenic,PVS1, PM1,PM2,PP2,PP 3	Weak	YES (1F)	
107911689 p.(Gly1249Ar g)	c.3745G >A	1F, 174,771	0.99	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1F)	
107920766 p.(Gly1282Gl u)	c.3845G >A	1M, 183,125	1	Del	DC	Gly	NO, but p(Gly1282V al), in LOVD	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1M)	
107920774 p.(Gly1285Se r)	c.3853G >A	1F, 183,121	0.026	Tol	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	NO	1F, 80,288
107920820 p.(Gly1300Al a)	c.3899G >C	1F, 182,971	0.999	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1F)	
107920829 p.(Gly1303Al a)	c.3908G >C	1M, 182,951	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1M)	
107923928	c.3962G	1F,	1	Del	DC	Gly	NO	Not	Likely pathogenic,	Weak	YES	

p.(Gly1321Va l)	>T	182,976						found	PM1,PM2,PP2,PP 3		(1F)	
107923937 p.(Gly1324Gl u)	c.3971G >A	1F, 182,990	1	Del	DC	Gly	NO	Not found	Likely pathogenic, PM1,PM2,PP2,PP 3	Weak	YES (1F)	1F, 80,25
p.(Gly1333Cy s)	c.3997G >T	1M, 182,997	1	Del	DC	Gly	NO, but p(Gly1333S er), Plant, 1999 ^{63, 70}	Not found	Pathogenic, PVS1,PM1,PM2,P M5,PP2,PP3	Weak	YES (1M)	1M, 80,24
107925082 p.(Gly1394Cy s)	c.4180G >T	2F, 182,474	1	Del	DC	Gly	NO	Not found	Pathogenic and predicted to result in termination codon, PP3	Moderat e	YES (2F)	
107929314 p.(Gly1424Se r)	c.4270G >A	1F, 182,592	1	Del	DC	Gly	YES LOVD, and p(Gly1424 Glu) Zhang, 2011	Not found	Likely pathogenic, PM2,PM3,PM5,PP 2,PP3	Weak	YES (1F)	
107802385	c.231+2 T>C	1M, 182,806					NO	Not found	Pathogenic, PVS1,PM2,PP3	Exon 3 skip likely, likely abolition of donor site (3/4 tools)	YES (1M)	1F, 80,15
107821614	c.780+1 G>T	1F, 183,138					NO	Not found	Pathogenic, PVS1,PM2,PP3	Exon 13 skip likely, likely abolition of donor site (4/4 tools)	YES (1F)	1M, 80,31
107863487	c.1340- 1G>A	1F, 183,216					NO	Likely pathog enic*	Pathogenic, PVS1,PM2,PP3,P P5	Exon21 skip likely, likely abolition of acceptor site (4/4 tools)	YES (1F)	1M, 80,31
107863487	c.2510- 2A>G	1F, 181,241					NO	Pathog enic (no asserti on criteria)	Pathogenic, PVS1,PM2,PP3,P P5	Exon 31 skip likely, likely abolition of acceptor site (3/4 tools)	YES (1F)	1M, 80,26
107917984	c.3808+	1F,					NO	Not	Pathogenic,	Exon 43 skip likely,	YES	

	1G>C	169,376						found	PVS1,PM2,PP3,P P5	likely abolition of donor site (3/4)	(1F)	
107929360	c.4315+ 1G>A	2F, 200,378					NO	Pathog enic*	Pathogenic, PVS1,PM2,PP3,P P5	Exon 48 skip likely, likely abolition of donor site (3/4 tools)	YES (2F)	
107898559 p.(Gly1083Te r)	c.3247_ 3248 delGG	1F, 182,859					NO	Not found	Pathogenic, PVS1,PM2,PP3	Likely abolition of acceptor site (4/4 tools) interrupts reading frame prematurel y	YES	1F, 80,169
54 variants assessed		88 individuals potentially affected (29M, 59F)	47 variant s patho- genic	47 variant s patho- genic	52 variant s patho- genic	45 missense variants con- served	16 previous reports of pathogenicity	9 decisions ; 7 pathogen ic	51 variants predicted pathogenic in Varsome	30 variants moderately or strongly pathogenic	9 decisions; 7 pathogenic	23 predicted pathogenic alleles (9M, 14F) in mean 73,849 alleles examined

Evidence for pathogenicity is highlighted in red and evidence against pathogenicity is in blue. M male, F female. PP2 (Polyphen-2), SIFT (Sorting Intolerant from Tolerant), Mutation taster are computational tools to assess pathogenicity, and scores of >0.80, Del (for deleterious) or DC (disease-causing) are consistent with pathogenicity respectively. Conservation of Gly was examined to vertebrates (in birds). ClinVar – uses P pathogenic, LP Likely pathogenic, VUS – variant of uncertain significance, B – benign, LB likely benign, and star system used for quality of assertion * to ****. Varsome uses ACMG/AMP grading of P, LP,VUS,LB and B and criteria of PVS, PM, PP, BS etc. While individual tools may be consistent with a pathogenic or benign classification these are not individually sufficient to assert variant pathogenicity. The tools used here have been to principally exclude variants where the evidence is not totally supportive of pathogenicity.

Copyright 2021 by ASN, Published Ahead of Print on 6/18/21, Accepted/Unedited Version

Table 3: Prevalence of predicted pathogenic variants in *COL4A5* in people of different ancestries in gnomAD

Ethnicity	Number of individuals tested	Number of predicted pathogenic variants	Prevalence of predicted pathogenic variants in COL4A5
African	12,132	7	One in 1,733
Ashkenazi Jewish	4,961	1	One in 4,961
East Asian	9,243	4	One in 2,310
European	59,512	33	One in 1,800
Finnish	12,242	0	None
Latino	18,105	6	One in 3,018
South Asian	12,948	4	One in 3,237
Other	3,140	4	One in 785
Total	136,920	59	One in 2,320

COL4A3	Probably pathogenic variants/mea	Prevalenc e	African	Latino	Ashkenazi m	East Asian	Europea n Finnish	European non- Finnish	Other	South Asians
	n total alleles									
	examined									
Position 1 Gly substitution s	380/234,398	0.16%	32/15,28 0	96/32,139	5/9400	46/16,84 2	7/20,376	140/106,28 8	8/5739	46/28,33 3
Frameshift variants	110/280,838	0.04%	3/15,431	26/35,368	0/10,360	2/17,966	6/25,004	48/128,652	5/7,148	18/30,60 2
Nonsense variants	33/245,590	0.01%	8/18,361	4/32,413	2/9,487	2/17,393	1/21,567	12/111,937	0/6,117	4/28,315
Splicing variants	36/264,528	0.01%	4/14,588	5/30,169	0/8,840	4/15,827	1/19,207	13/99,841	2/5,421	7/26,560
% predicted pathogenic alleles/mean total alleles	559/245,889	0.23%	47/15,75 5 (0.30%)	131/32,71 3 (0.40%)	7/9,425 (0.07%)	54/16,82 9 (0.32%)	15/22,228 (0.07%)	213/111,25 3 (0.19%)	15/6,16 6 (0.24%)	75/28,71 1 (0.26%)
% individuals with COL4A3 variant		0.45%	0.60%	0.80%	0.14%	0.64%	0.14%	0.38%	0.48%	0.52%
COL4A4										
Position 1 Gly substitution s	458/234,586	0.20%	44/15,80 5	114/31,85 0	6/9,292	52/16,79 3	9/20,406	174/106,59 0	7/5,759	52/28,09 0
Frameshift variants	42/223,504	0.02%	5/14,880	2/30,446	1/8,878	3/16,014	1/19,435	24/101,495	0/5,482	6/26,870
Nonsense	48/228,799	0.02%	2/15,211	2/31,170	1/9,098	2/16,386	0/19,838	29/104,040	3/5,609	4/27,444

Table 4: Prevalence of predicted pathogenic variants in COL4A3 and COL4A4 in people of different ancestries in gnomAD

variants										
Splicing variants	29/246,884	0.01%	2/15,273	5/34,351	0/10,009	3/17,838	0/21,428	14/111,706	0/6,006	5/30,271
% predicted pathogenic alleles/mean total alleles	577/233,916	0.25%	53/15,67 5 (0.34%)	123/31,91 7 (0.39%)	8/9,216 (0.09%)	60/16,75 8 (0.35%)	10/20,309 (0.05%)	241/106,07 3 (0.23%)	10/5,71 4 (0.18%)	67/28,10 4 (0.24%)
% individuals with <i>COL4A4</i> variant		0.49%	0.68%	0.78%	0.18%	0.70%	0.10%	0.46%	0.36%	0.48%
% with COL4A3 or <i>COL4A4</i> variant		0.94%	1.28%	1.58%	0.32%	1.34%	0.24%	0.84%	0.84%	1.00%

These population frequencies are based on the mean total alleles examined for each variant and not on the total number of individuals examined.

Figure Legend

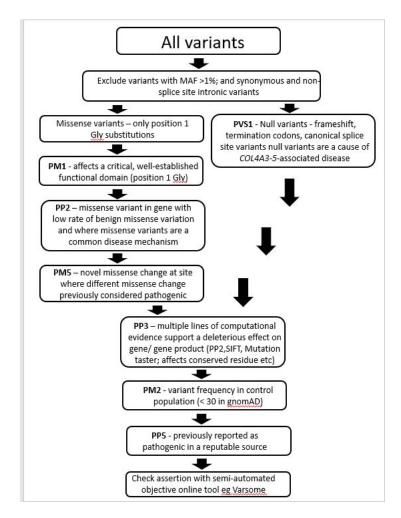


Figure 1: Filtering steps in assessment of individual *COL4A3 – COL4A5* variants using ACMG/AMP criteria. PVS1 – very strong evidence of pathogenicity; PM1, PM2, PM5 - Moderate evidence of pathogenicity; PP2, PP3, PP5 – Supporting evidence of pathogenicity²⁴. MAF - Minor Allele Frequency

- ³ Supplementary Tables
- Suppl Table 1: Applicability of ACMG/AMP criteria for COL4A3 COL4A5 variants
 in population frequency databases 24
- Suppl Table 3: Assessment of *COL4A5* variants in the 100,000 Genomes Project database and correlation with haematuria
- Suppl Table 4: Assessment of *COL4A3* variants in the 100,000 Genomes Project
 database and correlation with haematuria
- Suppl Table 5: Assessment of *COL4A4* variants in the 100,000 Genomes Project
 database and correlation with haematuria
- Suppl Table 6: Predicted pathogenic variants in COL4A5 in the Exome Variant
 Server database
- Suppl Table 7: *COL4A5* predicted pathogenic variants in the TOPMed database Suppl Table 8: Mitigating features for the clinical effects of *COL4A5* predicted pathogenic variants resulting in position 1 Gly substitutions in gnomAD:
- associations with gender, location, and replacement residues Suppl Table 9: Variants in COL4A3 and COL4A4 in gnomAD with
- Suppl Table 9: Variants in COL4A3 and COL4A4 in gnomAD with inconsistent
 assessments subsequently excluded from population frequency studies
 Suppl Table 10: Predicted pathogenic founder variants in COL4A3 and COL4A4 in
 different ancestries in gnomAD
 Suppl Table 14: Estimated and the pathogenic former studies former studies former studies former studies former studies
 - Suppl Table 11: Estimated population frequencies for predicted pathogenic heterozygous, compound heterozygous, and digenic variants

Supplementary Tables

Suppl Table 1: Applicability of ACMG/AMP criteria for *COL4A3 – COL4A5* variants in population frequency databases ²⁴

Suppl Table 2: Non-collagenous domains and interruptions in collagen IV α 5, α 3 and α 4 chains^{28, 26, 27}

Suppl Table 3: Assessment of *COL4A5* variants in the 100,000 Genomes Project database and correlation with haematuria

Suppl Table 4: Assessment of *COL4A3* variants in the 100,000 Genomes Project database and correlation with haematuria

Suppl Table 5: Assessment of *COL4A4* variants in the 100,000 Genomes Project database and correlation with haematuria

Suppl Table 6: Predicted pathogenic variants in *COL4A5* in the Exome Variant Server database

Suppl Table 7: COL4A5 predicted pathogenic variants in the TOPMed database

Suppl Table 8: Mitigating features for the clinical effects of *COL4A5*predicted pathogenic variants resulting in position 1 Gly substitutions in gnomAD: associations with gender, location, and replacement residues

Suppl Table 9: Variants in *COL4A3* and *COL4A4* in gnomAD with inconsistent assessments subsequently excluded from population frequency studies

Suppl Table 10: Predicted pathogenic founder variants in *COL4A3* and *COL4A4* in different ancestries in gnomAD

Suppl Table 11: Estimated population frequencies for predicted pathogenic heterozygous, compound heterozygous, and digenic variants

Suppl Table 1: Applicability of ACMG/AMP criteria for *COL4A3 – COL4A5* variants in population frequency databases ²⁴

Pathogenic criteria	Description	Applicability to population frequency databases for COL4A3 – COL4A5
Very strong evidence o		1
PVS1	Null variant (nonsense, frameshift, *canonical +/- 1 or 2 splice site, initiation codon, single or multi-exon deletion)	YES
Strong evidence of pa	athogenicity (PS)	
PS1	Same amino acid change as described previously regardless of nucleotide change	YES
PS2	<i>De novo</i> variant in a patient with the disease and no family history	NO
PS3	Well-established <i>in vitro</i> or <i>in vivo</i> functional studies supporting a damaging effect on the gene or gene product	No (not available for COL4A3 – COL4A5)
PS4	Prevalence of variant in affected individuals is significantly increased compared with prevalence in controls	NO
Moderate evidence o	f pathogenicity (PM)	
PM1	Located in a mutational hotspot and/or critical and well- established functional domain	YES**
PM2	Absent from controls (or low prevalence)	YES
PM3	For AR diseases, detected <i>in trans</i> with a pathogenic variant	NO
PM4	Protein length changes due in in-frame deletions/insertions or stop loss variants	YES
PM5	Novel amino acid change in an amino acid residue where a different missense change determined to be pathogenic has been seen before	YES
PM6	Assumed <i>de novo</i> , but without confirmation of paternity and maternity	NO
Supporting evidence	of pathogenicity (PP)	
PP1	Co-segregation with disease in multiple affected family members in causative gene	NO
PP2	Missense variant where these are a common mechanism of disease	YES
PP3	Multiple lines of computational evidence support a deleterious effect (conservation, evolutionary, splicing impact etc)	YES
PP4	Patient's phenotype or family history is highly specific for a disease with a single genetic aetiology	NO
PP5	Reputable source recently reports variant as pathogenic but the evidence is not available to the laboratory	YES
Benign criteria	1	I

BA1	Allele frequency is above 5% in EVS, 1000 genomes or ExAC	NO
Strong evider	nce of benign impact (BS)	
BS1	Allele frequency is greater than expected for disorder	YES
BS2	Observed in a healthy adult individual for X-linked disorder	NO
	with full penetrance expected at an early age	
BS3	Well-established in vitro or in vivo functional studies shows no	NO
	damaging effect on protein function or splicing	
BS4	Lack of segregation in affected members of a family	NO
Supporting ev	vidence of benign impact (BP)	
BP1	Missense variant in a gene for which primarily truncating	NO
	variants are known to cause disease	
BP2	Observed in trans with a pathogenic variant for a fully	NO
	penetrant dominant gene/disorder, or in cis with a pathogenic	
	variant in any inheritance pattern	
BP3	In-frame deletions/insertions in a repetitive region without a	YES
	known function	
BP4	Multiple lines of computational evidence suggest no impact	YES
	on gene or gene product (conservation, evolutionary, splicing	
	impact etc)	
BP5	Variant found in a case with an alternate molecular basis for	NO
	disease	
BP6	Reputable source recently reports variant as benign but the	YES
	evidence is not available for an independent evaluation	
BP7	A synonymous variant for which splicing prediction algorithms	YES
	predict no impact to the splice consensus sequence nor the	
	creation of a new splice site AND the nucleotide is not highly	
	conserved	

PVS1, PS1, PM1 etc are explained in the Table

*A recent publication has warned against the use of PP3 for canonical splice-site variants but these are still used by Varsome³⁶, and we did not alter Varsome assessments.

** https://www.acgs.uk.com/media/11285/uk-practice-guidelines-for-variant-classification-2019-v1-0-3.pdf

Collagen IV α 5 chain	Collagen IV $\alpha 3$ chain	Collagen IV $\alpha 4$ chain
Amino -NC domain	Amino NC (1-42)	Amino NC (1-61)
(1-41)		
I (160-167)	I (160-170)	I (176-183)
II (220-223)	II (222-223)	II (235-236)
III (243-257)	III (245-258)	III (258-269)
IV (282 283)*	IV (283-287)	IV (294-295)
V (344-355)	V (345-353)	V (359-366)
VI (390-393)	VI (387-388)	VI (400-401)
VII (416-419)	VII (413-414)	VII (429-432)
VIII (442-453)	VIII (442-445)	VIII (457-462)
IX (479-487)	IX (476-483)	IX (493-496)
X (549-554)	X (544-547)	X (560-565)
XI (595-599)	XI (587-589)	XI (605-609)
XII (625)	XII (617-618)	XII (631-632)
XIII (657-662)	XIII (649-655)	XIII (666-673)
XIV (706)	XIV (698-699)	XIV (716-718)
XV (753-756)	XV (745-749)	XV (740-741)
XVI (818)	XVI (810-811)	XVI (763-764)
XVII (853-856)	XVII (848-849)	XVII (828-830)
XVIII (954-960)	XVIII (946-951)	XVIII (966-971)
XIX (1070-1073)	XIX (1060-1064)	XIX (1014)
XX (1189)	XX (1176-1179)	XX (1078-1081)
XXI (1245-8)	XXI (1234-1235)	XXI (1196-1197)
XXII (1373-78)	XXII (1263-1264)	XXII (1222-1223)
Carboxy-NC domain	XXIII (1352-1357)	XXIII (1251-1257)
(1461-1691)		
	Carboxy- NC (1439-1670)	XXIV (1285-1288)
		XXV (1370-1379)
		XXVI (1404-1405)
		Carboxy-NC (1460-1690)

Suppl Table 2: Non-collagenous domains and interruptions in collagen IV α 5, α 3 and α 4 chains^{28, 26, 27}

*This is not an interruption but rather is formed from two Gly residues adjacent to each other.

Protein consequence	Transcript	PP2	SIFT	мт	Cons	gnomAD (Hem/ Het, total alleles)	Previously reported; or substitution with other residue (LOVD)	ClinVar	Varsome	Predicted	Number in 100,000 Genomes Project with haematuria	Number in 100,000 Genomes Project without haematuria
p.(Gly93Cys)	c.277G>T	1	0	1	Gly	None	NO		P (PM1,PM2,PM5,PP2,PP3)	YES	1	0
	c.323G>		-	_								-
p.(Gly108Glu)	Α	1	0	1	Gly	None	NO		P (PM1,PM2,PM5,PP2,PP3)	YES	1	0
p.(Gly138Cys)	c.412G>T	1	0	1	Gly	None	NO; other - LP/P	LP*	LP (PM1,PM2,PM5,PP2, PP3, PP5)	YES	0	1
	c.919G>											
p.(Gly307Ser)	A	1	0	1	Gly	None	YES- LP, other-P		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly325Arg)	c.973G> A	0.999	0	1	Gly	None	YES - P	Р*	P (PS1,PM1,PM2,PM5,PP2, PP3,PP5)	YES	1	0
p.(Gly426Arg)	c.1276G> A	1	0.001	1	Gly	None	YES - P		P (PS1,PM1,PM2,PP2,PP3)	YES	1	0
p.(Gly491Arg)	c.1471G> A	0.999	0.003	1	Gly	None	Other - P		LP(PM1,PM2,PM5,PP2,PP3)	YES	0	1
p.(Gly533Arg)	c.1597G> A	1	0	1	Gly	None	Other - P		LP (PM1,PM2,PM5,PP2,PP3)	YES	1	0
p.(Gly635Arg)	c.1903G>	1	0	1	Gly	None	LP; other -P		P (PM1,PM2,PM5,PP2,PP3)	YES	1	0
^{GN} p.(Gly624Asp)	c.1871G> A	1		1	Gly	16/ 182,998	Slajpah (2007)	P**	P (PM1,PP2,PP3,PP5)	YES	0	1
p.(Gly653Val)	c.1958G>	1	0.021	1	Gly	None	Other x2 - P		LP (PM1, PM2, PM5, PP2, PP3)	YES	1	0
p.(Gly693Val)	c.2078G>	1	0		Gly	None	Other x2- LP		LP (PM1,PM2, PM5,PP2, PP3)	YES	1	0
· · · · ·	c.2120G>	1	0.002	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3	YES	1	0
p.(Gly707Val) p.(Gly743Ala)	c.2228G> C	1	0.002	1	Gly	None	Other - P		LP (PM1,PM2,PP2,PP3 LP (PM1,PM2,PM5,PP2,PP3)	YES	0	1

Suppl Table 3: Assessment of COL4A5 variants in the 100,000 Genomes Project database and correlation with haematuria

	c.2255G>					2/						
^{GN} p.(Gly752Val)	Т	1	0.031	1	Gly	183,277	Other – P		LP (PM1,PM2,PP2,PP3)	YES	0	3
	c.2858G>					705/	Knebelman	Conflict	VUS (PM1,PP2,PP3,PP5,			
p.(Gly953Val)	Т	1	0.001	1	Gly	204,819	(1996)	ing*	BS1,BS2)	NO	5	63
	c.3196G>								P (PS1, PM1,PM2,			
p.(Gly1066Ser)	А	1	0	1	Gly	None	Other x 3 - P	Ρ*	PM5,PP2,PP3,PP5)	YES	1	0
	c.4162G>											
p.(Gly1388Ser)	А	1	0.005	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
	c.4262G>											
p.(Gly1421Asp)	А	1	0	1	Gly	None	Other - LP		LP (PM1,PM2,PP2,PP3)	YES	1	0
	c.4297G>						Other -3 in 4 -		P (PVS1, PM1, PM2, PM5,			
p.(Gly1433Ser)	А	1	0	1	Gly	None	LP		PP2, PP3)	YES	1	0
Total number with	n a predicted	l pathoge	enic varia	nt with	n and w	ithout haen	naturia respective	ly			12	9
Total number with	n predicted r	on-path	ogenic va	riant v	vith or	without hae	maturia respectiv	ely			5	63
Total number with	n haematuria	and wit	hout hae	maturi	a respe	ectively					2221	37,200

GnomAD indicates that the variant is also found in gnomAD database. Data highlighted in blue are those with evidence against pathogenicity, and conclusion and number of individuals from 100,000 Genomes Project with this variant with or without haematuria are. PP2 (Polyphen-2), SIFT (Sorting Intolerant from Tolerant), Mutation taster are computational tools to assess pathogenicity, and scores of >0.80, Del (for deleterious) or DC (disease-causing) are consistent with pathogenicity respectively. Conservation of Gly was examined to vertebrates (in birds). ClinVar – uses P pathogenic, LP Likely pathogenic, VUS – variant of uncertain significance, B – benign, LB likely benign, and star system used for quality of assertion * to ****. Varsome uses ACMG/AMP grading of P, LP,VUS,LB and B and criteria of PVS, PM, PP, BS etc. The tools used here have been to principally exclude variants where the evidence is not supportive of pathogenicity.

Of especial interest was p.(Gly953Val) which was not predicted pathogenic and excluded from the population frequency. It was assessed as pathogenic in only two of the three computational tools, and had a conflicting ClinVar assessment. It was present 691 times in the gnomAD cohort almost always in people of East or South Asian ancestry. Alamut considered it Likely Pathogenic based on 2 moderate (PM1-PM6) and > 4 supporting (PP1-PP5) criteria, but Varsome assessed it as Benign (PM1, PP2, PP3, BS1, BS2). This variant has been described previously as hypomorphic⁴¹, but has also been detected on the same allele as other pathogenic *COL4A5* variants^{42, 43}. A recent study with clinical data from several families concluded that it was not pathogenic⁴⁴.

Suppl Table 4: Assessment of COL4A3 variants in the 100,000 Genomes Project database and correlation with haematuria

Protein consequence	Transcript	PP2	SIFT	МТ	Cons	gnomA D (Hem/ Het, total alleles)	Previously reported; or substituti on with other residue (LOVD)	ClinVar	Varsome	Predicted pathogenic	Number in 100,000 Genomes Project with haematuria	Number in 100,000 Genomes Project without haematuria
	- 1200- 1		0	0.000	Cha	61/	1.5	LB**		NO	0	10
p.(Gly46Arg)	c.136G>A	1	0.14	0.999	Gly	280,882	LB	LB**	LP (PM1,PM2PP2,PP3,BP6)	NO	0	10
p.(Gly49Arg)	c.145G>C	1	0.14 (Tol)		Gly	None	VUS		VUS (PM1,PM2, PP2)	NO	0	1
p.(Gly49Glu)	c.146G>A	1	0.002	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(diy430id)	0.1400/11		0.002	0.5555	Ciy	1/	110			125		
p.(Gly58Arg)	c.172G>C	1	0	0.9999	Gly	240,996	Other x1 P		LP (PM1,PM2,PM5,PP2,PP3)	YES	0	1
p.(Gly58Asp)	c.173G>A	1	0	0.9999	Gly	None	Other x1 P		LP (PM1,PM2,PM5,PP2,PP3)	YES	0	1
p.(,		_	-			6/						
p.(Gly58Ser)	c.172G>A	1	0	0.9999	Gly	243,384	Other x1 P	VUS*	LP (PM1,PM2,PM5,PP2,PP3)	YES	0	6
p.(Gly67Ter)	c.199G>T				Gly	None	NO		P (PVS1,PM2,PP3)	YES	0	1
p.(Gly70Arg)	c.208G>C	1	0.002	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
						1/						
^{GN} p.(Gly94Glu)	c.281G>A	1	0	0.9999	Gly	249,140	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly94Asp)	c.281G>A	1			Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly97Ser)	c.292G>A	1			Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly97Cys)	c.292G>T	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
						1/						
^{GN} p.(Gly100Arg)	c.298G>A	1	0	0.9999	Gly	249,204	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly112Ser)	c.334G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly115Asp)	c.341G>A		0	0.9999	Gly	None	LP	Р	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	1
p.(Gly118Arg)	c.352G>A	1	0	0.9121	Gly		NO		LP (PM1,PM2,PP2,PP3)	YES	1	1
^{GN} p.(Gly124Glu)	c.371G>A	1	0	0.9999	Gly	1/ 249,394	NO		LP (PM1,PM2,PP2,PP3)	YES	0	2
p.(Gly139Arg)	c.415G>C	1	0	0.9999	Gly	249,394 None	P	VUS**	LP (PM1,PM2,PP2,PP3) LP (PM1,PM2,PP2,PP3)	YES	1	1
h.(alatzavir)	L.4130/L		0	0.9999	Giy	4/		VU3	LF (FIVI1, FIVI2, FF2, FF3)	163	L	
p.(Gly148Val)	c.443G>T	1	0.002	1	Gly	4/ 280,874	LP, VUS		LP (PM1,PM2,PP2,PP3)	YES	1	1
p.(Gly174Val)	c.521G>T	1	0	1	Gly	None	Other x2 P		LP,PM1,PM2,PM5,PP2,PP3)	YES	1	0

						1/	Other x 3				
^{GN} p.(Gly183Asp)	c.548G>A	1	0.001	1	Gly	249,322	Р		LP (PM1,PM2,PP2,PP3)	YES	0
p.(Gly201Glu)	c.602G>A	1	0.002	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0
p.(Gly204Val)	c.611G>T	1	0.002	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0
p.(Gly213Arg)	c.637G>A	1	0.001	0.9999	Gly	None	NO		P (PS1,PM1,PM2,PP2,PP3)	YES	0
p.(Gly242Glu)	c.725G>A	1	0.003	0.9999	Gly	None	Р	LP*	LP (PM1,PM2,PP2,PP3,PP5)	YES	0
p.(Gly291Glu)	c.872G>A	1	0	1	Gly	None	Р	LP	LP (PM1,PM2,PP2,PP3,PP5)	YES	0
						5/					
^{GN} p.(Gly300Arg)	c.898G>A	1	0	0.9999	Gly	249,426	LP, VUS		LP (PM1,PM2,PP2,PP3)	YES	0
p.(Gly372Ser)	c.1114G>A	1	0.006	0.9998	Gly	None	NO		P (PVS1,PM1,PM2,PP2,PP3)	YES	0
			0.000								
p.(Gly378Glu)	c.1133G>A	1	2	0.9936	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	1
						1/					
^{GN} p.(Gly389Asp)	c.1166G>A	1	0.002	0.9999	Gly	248,214	NO		LP (PM1,PM2,PP2,PP3)	YES	0
(Other x 1				
p.(Gly407Ala)	c.1220G>C	1	0.008	1	lle	None	VUS		LP (PM1,PM2,PM5,PP2,PP3)	NO	1
						5/					
^{GN} p.(Gly436Ala)	c.1307G>C	1	0.01	0.9999	Gly	280,838	NO		LP (PM1,PM2,PP2,PP3)	YES	0
	- 44500: 4		0.010	0.0000		7/			D (DC4 DN44 DN42 DD2 DD2)	NEC	
^{GN} p.(Gly484Arg)	c.1450G>A	1	0.018	0.9999	Gly	249,506	NO Others 1		P (PS1,PM1,PM2,PP2,PP3)	YES	0
p.(Gly487Val)	c.1460G>T	1	0.012	0.9999	Gly	None	Other x 1 P			YES	0
p.(Gly467 val)	0.1400021	1	0.012	0.9999	Giy	31/	P Other x 1		LP (PM1,PM2,PM5,PP2,PP3)	TES	
p.(Gly487Ser)	c.1459G>A	1	(Dam)	(Pol)	Gly	280,912	P		LP (PM1,PM2,PM5,PP2,PP3)	NO	0
p.(diy4075ci)	0.1433027		(Dani)		Giy	200,312	Other x 1			NO	
p.(Gly511Arg)	c.1531G>A	1	0.001	0.9999	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	0
p:(-:/:8/		_					Other x 1				
p.(Gly511Ala)	c.1532G>C	1	0.003	0.9999	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	0
					, í		P or VUS;				1
							other x1		Р (РР5,		
p.(Gly532Cys)	c.1594G>T	1	0.002	1	Gly	None	LP	P, LP**	PM1,PM2,PM5,Pp2,PP3)	YES	0
p.(Gly560Val)	c.1679G>T	1	0	0.9999	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	1
p.(Gly575Arg)	c.1723G>A	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1
p.(Gly575Glu)	c.1724G>A	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1
p.(Gly575Val)	c.1724G>T	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0
p.(Gly602Asp)	c.1805G>A	0.795	0.003	0.9999	Gly	None	NO		LP (PM1,PM2, PP2,PP3)	NO	0
p.(Gly611Glu)	c.1832G>A	1	0.002	0.9999	Gly	None	VUS		LP (PM1,PM2,PM5,PP2,PP3)	YES	0
						2/	LP, P, or				
^{GN} .(Gly619Arg)	c.1855G>A	1	0.002	0.9999	Gly	246,972	VUS		P (PS1,PM1,PM2,PP2,PP3)	YES	1

						2/			
^{GN} p.(Gly637Arg)	c.1909G>A	1	0	0.9999	Gly	246,114	NO		P (PS1,PM1,PM2,PP2,PP3)
(2/			
p.(Gly680AspfsTe	c.2031_203					244,894			
r70)	8dup	1			Gly	Р	P		P (PVS1, PM2, PP3, PP5)
							Other x 1		
	c.2084G>A	1	0	0.9999	Chu	None	LP, P or VUS		
p.(Gly695Glu)	C.2084G>A	1	0	0.9999	Gly	None 31/		Con-	LP (PM1,PM2,PM5,PP2,P
p.(Gly695Arg)	c.2083G>A	1	0	0.9999	Gly	278,152	LP, P or VUS	flicting	P (PS1, PM1, PM2, PP2, PP
p.(Gly700Glu)	c.2099G>A	1	0.001	0.9999	Gly	None	NO	meting	LP (PM1,PM2,PP2,PP3)
p.(Gly721ValfsTer	C.203302A	1	0.001	0.3333	Giy	3/			
26)	c.2162del	1	0	1	Gly	243,442	NO	р*	LP (PM1,PM2,PP2,PP3)
p.(Gly730Glu)	c.2189G>A	1	0	0.9999	Gly	None	NO	VUS	LP (PM1,PM2,PP2,PP3)
			-	0.5555	í í	None		105	
p.(Gly780Glu)	c.2339G>A	1	0	1	Gly	None	LP		LP (PM1,PM2,PP2,PP3)
							P; other		
p.(Gly792Glu)	c.2375G>A	1	0	1	Gly	None	x1 LP		LP (PM1,PM2,PP2,PP3)
p.(Gly801Glu)	c.2402G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)
p.(Gly807ArgfsTer						1/			
28)	c.2417dup	1	0.002	0.9999	Gly	172,936	Р	LP**	P (PVS1,PM2,PP3,PP5)
(0.9986		10/			/
p.(Gly812Ser)	c.2434G>A	0.339	0.019	(Pol)	Gly	178,112	VUS		VUS (PM1,PM2,PP2,BP4)
	24520.4					2/			D (DC4 DI 44 DI 42 DD2 DD
^{GN} p.(Gly818Arg)	c.2452G>A	1	0	1	Gly	174,872	LP, VUS	Р	P (PS1,PM1,PM2,PP2,PP3
p.(Gly824Glu)	c.2471G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)
	a 256705 A	0.007	_		<u> </u>	Nore	LP, P or		
p.(Gly856Glu)	c.2567G>A c.2620G>T	0.997	0	1	Gly Gly	None None	VUS NO		LP (PM1,PM2,PP2,PP3) P (PVS1,PM2,PP3
p.(Gly874Ter)	0.20206>1			1	Giy	10/	NO		P (PV31,PIVI2,PP3
p.(Gly874AspfsTe r9)	c.2621del	1			Gly	280,726	NO	LP*	P (PVS1,PM2,PP3,PP5)
p.(Gly883Arg)	c.2647G>A	1	0	1	Gly	None	NO	LF	P (PS1,PM1,PM2,PP2,PP
p.(Gly895Asp)	c.2684G>A	1	0	1	Gly	None	NO	LP	LP (PM1,PM2,PP2,PP3,PI
p.(diyossAsp)	C.208402A	1	0	1	Giy	2/	NO	LF	
p.(Gly943Arg)	c.2827G>A	1	0	0.9999	Gly	249,332	NO		LP (PM1,PM2,PP2,Pp3)
p.(Gly1128Ala)	c.3383G>C	0.999	0	0.9999	Glv	None	NO		LP (PM1,PM2,PP2,Pp3)
p.(0191120Ala)	0.33030/0	0.555	0	1	Giy	NUTE	Other x 1		
p.(Gly1137Ser)	c.3409G>A	1	0	1	Gly	None	P		LP (PM1,PM2,PM5,PP2,F
p.(Gly1152Val)	c.3455G>T	1	0	1	Gly	None	NO		LP (PM1,PM2,PM5,PP2,P

<i>/ - /</i>						1/		Con-				
p.(Gly1158Arg)	c.3472G>C	1	0	1	Gly	249,490	VUS	flicting *	LP (PM1,PM2,PP2,PP3)	NO	0	
			-			2/			- /			
^{GN} p.(Gly1167Arg)	c.3499G>A	1	0	1	Gly	249,476	LP, P, VUS	P,LP	P (PS1,PM1,PM2,PP2,PP3,PP5)	YES	1	
p.(Gly1198Ser)	c.3592G>A	1	0	1	Gly	None	NO	LP	LP (PM1,PM2,PM5,PP2,PP3,PP5)	YES	1	
p.(0.)110000.)	0.00010.71	_			0.7	1/	Other x1,				_	
^{GN} p.(Gly1207Arg)	c.3619G>C	1	0.532	0.9981	Gly	234,658	P	Р	VUS (PM1PM2,PP2)	NO	1	
							Other x1,					
p.(Gly1231Ser)	c.3691G>A	1	0.006	1	Gly	None	Р	VUS	LP (PM1,PM2,PP2,PP3)	YES	0	
						1/						
^{GN} p.(Gly1254Arg)	c.3760G>C	1	0.002	1	Gly	249,506	Р		LP (PM1,PM2,PP2,PP3)	YES	3	
p.(Gly1268Glu)	c.3803G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
						102/	LP, P or					
^{GN} p.(Gly1277Ser)	c.3829G>A	1	0	1	Gly	280,750	VUS	VUS	P (PS1,PM1,PM2,PP2,PP3,PP5)	NO	2	
p.(Gly1280Cys)	c.3838G>T	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	
p.(Gly1283Glu)	c.3848G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly1298Arg)	c.3892G>C	1	0.001	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	
p.(Gly1304Arg)	c.3910G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly1313Glu)	c.3938G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
n (Clu1228)(al)	c.3983G>T	1	0.002	1	Gly	8/ 280,792	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly1328Val)	0.5965021	1	0.002	1	Gly	1/	NO			TES	0	
^{GN} p.(Gly1367Arg)	c.4099G>C	1	0	1	Gly	249,320	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly1376Arg)	c.4126G>C	1	0.001	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
. , 5,	1				,	1/				1		
^{GN} p.(Gly1397Glu)	c.4190G>A	1	0.002	1	Gly	249,248	NO		LP (PM1,PM2,PP2,Pp3)	YES	0	
						2/						
^{GN} p.(Gly1400Glu)	c.4199G>A	1	0	1	Gly	249,256	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly1418Glu)	c.4253G>A	1	0	1	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	1	
Total number wit	h a predicted p	pathogen	ic variant	with hae	maturi	a or withou	it respective	ly			21	
Total number wit							•				2,221	

Variants with any evidence not consistent with pathogenicity are highlighted in blue. Otherwise notes are the same as for Suppl Table 3.

Protein consequence	Transcript	PP2	SIFT	мт	Cons	gnomAD (Hem/ Het, total alleles)	Previously reported; or substitution with other residue (LOVD)	ClinVar	Varsome	Predicted pathogenic	Number in 100,000 Genomes Project with haematuria	Number in 100,000 Genomes Project without haematuria
	c.4376G>		0.044	0.999		2/						
p.(Gly1459Val)	Т	0.627	(Dam)	4 (Pol)	Gly	274,180	LP		VUS (PM1,PM2,PP2, BP4)	NO	0	1
^{GN} p.(Gly1430Arg)	c.4288G> A	1	0.001	1	Gly	1/ 249,468	NO	Р*	LP (PM1,PM2PP2,PP3,PP5)	YES	0	1
p.(Gly1418Asp)	c.4253G> A	1	0.003	1	Gly	None	NO		LP (PM1,PM2PP2,PP3)	YES	0	1
p.(Gly1401ProfsT er31)	c.4200_42 01del	1			Gly	None	P		P (PVS1,PM2,PP3)	YES	0	1
p.(Gly1380Asp)	c.4139G> A	1	0.001	0.999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	2
^{GN} p.(Gly1346Val)	c.4037G> T	1	0.002	1	Gly	4/ 249,206	NO		LP (PM1,PM2,PP2,PP3)	YES	0	2
^{GN} p.(Gly1325Arg)	c.3973G> C	1	0	0.999 9	Gly	9/ 249,006	NO		P (PVS1,PM2,PP2,PP3)	YES	0	4
p.(Gly1319Arg)	c.3955G> A	1	0	0.999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
	c.3884G>			0.999	,							
p.(Gly1295Asp)	A c.3875G>	1	0.002	8	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly1292Asp)	A c.3773G>	1	0	1	Gly	None	LP	LP	LP (PM1,PM2,PP2,PP3,PP5)	YES	1	0
p.(Gly1258Asp)	А	1	0.005	0.998	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	2
^{GN} p.(Gly1248Glu)	c.3743G> A	1	0.003	0.999 9	Gly	17/ 280,842	VUS	LP*	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	1
p.(Gly1230Asp)	c.3689G> A	1	0.003	0.999 9	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
	c.3602G>			0.999		1/						
^{GN} p.(Gly1201Asp)	A c.3532G>	1	0	9 0.999	Gly	249,040 24/	LP		LP (PM1,PM2,PM5,PP2,PP3)	YES	0	1
^{GN} p.(Gly1178Ser)	А	1	0	9	Gly	280,386	LP, VUS		LP (PM1,PM2,PP2,PP3)	YES	0	3

Suppl Table 5: Assessment of COL4A4 variants in the 100,000 Genomes Project database and correlation with haematuria

	c.3452G>					10/						
^{GN} p.(Gly1151Ala)	С	1	0	1	Gly	249,432	NO		LP (PM1,PM2,PP2.PP3)	YES	0	
	c.3407G>			0.999		3/						
^{GN} p.(Gly1136Ala)	С	1	0	9	Gly	280,616	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.3371G>											
p.(Gly1124Val)	Т	1	0.001	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.3307G>			0.999		5/						
^{GN} p.(Gly1103Arg)	А	1	0.001	9	Gly	249,156	P, VUS	LP*	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	
	c.3245G>											
p.(Gly1082Val)	Т	1	0.002	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.3204_32											
p.(Gly1069SerfsTe	05											
r4)	insTCTT	1			Gly	None	NO		P (PVS1,PM2,PP3)	YES	2	
	c.3052G>					4/						l
p.(Gly1018Arg)	С	1	0	1	Gly	249,580	NO		LP (PM1,PM2,PP2,PP3)	YES	0	ļ
	c.3043G>								LP			
p.(Gly1015Arg)	A	1	0.001	1	Gly	None	Other x1 LP		(PM1,PM2,PM5,PP2,PP3)	YES	0	
	c.3044G>					14/		Con-				
p.(Gly1015Glu)	A	1	0.002	1	Gly	280,944	Other x1 LP	flicting*	LP ((PM1,PM2,PP2,PP3,PP5)	NO	1	
	c.2986G>					10/						
^{GN} p.(Gly996Arg)	A	1	0	1	Gly	280,858	P, VUS	P*	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	
	c.2969G>					4/						
^{GN} p.(Gly990Asp)	A	1	0	1	Gly	249,330	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.2888G>					2/						
^{GN} p.(Gly963Glu)	A	0.997	0.272 (Tol)	0.9999	Gly	249,566	NO		LP (PM1.PM2,PP2,PP3)	NO	1	
	c.2878G>					3/		LP or P	Р		-	
^{GN} p.(Gly960Arg)	Α	1	0.002	1	Gly	249,540	NO	**	(PS1,PM1,PM2,PP2,PP3,PP5)	YES	0	+
	c.2843G>		-	0.0000		3/				1	_	I
p.(Gly948Ala)	C	1	0	0.9999	Gly	280,952	NO		LP (PM1,PM2,PP2,PP3)	YES	1	+
	c.2815G>		_	0.0000						1		l
p.(Gly939Ser)	A	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	+
	c.2780G>		_							NEC	_	I
p.(Gly927Glu)	A	1	0	1	Gly	None	NO		LP(PM1,PM2,PP2,PP3)	YES	0	
	c.2617G>		_					Con-				
p.(Gly873Arg)	A	1	0	1	Gly	None	P, LP	flicting*	P (PM1,PM2,PP2,PP3)	NO	1	1
	c.2590G>		_			1/		1.0*	LD (DM4 DM2 DD2 DD2 DD2)	VEC	_	
^{GN} p.(Gly864Arg)	A	1	0	1	Gly	31,324	LP, P	LP*	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	+
	c.2582G>		0.001	0.0000					10 (0144 0142 000 000)	VEC		
p.(Gly861Glu)	А	1	0.001	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	T

	c.2518G>											
p.(Gly840Arg)	А	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	
	c.2509G>											
p.(Gly837Arg)	С	1	0	1	Gly	None	Other x1, P		LP (PM1,PM2,PM5,PP2,PP3)	YES	0	
	c.2474G>											
p.(Gly825Ala)	С	0.125	0.048	0.9981	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	NO	0	
	c.2447G>					4/						
^{GN} p.(Gly816Val)	Т	1	0	1	Gly	249,158	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.2447G>					24/	_					
p.(Gly816Glu)	A	1	0	1	Gly	249,158	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.2402G>					1/	_					
^{GN} p.(Gly801Ala)	C	1	0	0.9999	Gly	249,424	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.2402G>		~			New				VEC		
p.(Gly801Glu)	A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p(Ch/70.95 - r)	c.2392G>		0.005	0.0000	Chi	3/	NO	1/116*		VEC		
p.(Gly798Ser)	A	1	0.005	0.9999	Gly	280,816	NO	VUS*	LP (PM1,PM2,PP2,PP3)	YES	0	
p(Ch/792Arg)	c.2347G>		0	1	Ch	Nono	NO	VUS*		YES		
p.(Gly783Arg)	A c.2320G>	1	0	1	Gly	None 19/	NO	VUS.	LP (PM1,PM2,PP2,PP3)	TES	0	
GNn (Gly771Arg)	C.2320G>	1	0	1	Gly	19/ 280,942	LP,P, VUS	LP**	LP (PM1,PM2,PP2,PP3,PP5)	YES	0	
^{GN} p.(Gly774Arg)	c.2294G>		0	1	Giy	280,942 9/	LF,F, VU3			113	0	
^{GN} p.(Gly765Val)	T	1	0.009	1	Gly	9/ 249,576	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(019703 val)	c.2251G>		0.009	1	Giy	273,370				125	0	
p.(Gly751Arg)	A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
P.(C.), 01, 00/	c.2242G>		0	-	0.,	9/				. 20	Ŭ	
^{GN} p.(Gly748Ser)	A	0.954	0	1	Gly	280,758	NO	LP**	LP (PM1,PM2,PP2,PP3,PP5)	YES	2	
1 (-))	c.2200G>			_	- 1	2/	-	1	, , , , , , , , , , , , , , , , , , , ,	-		
^{GN} p.(Gly734Ser)	A	1	0.009	0.9999	Gly	249,028	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
,	c.2092G>		-		, í							
p.(Gly698Arg)	А	1	0	1	Gly	None	NO	VUS*	LP (PM1,PM2,PP2,PP3)	YES	1	
	c.1979G>											
p.(Gly660Asp)	А	1	0.006	0.9999	Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.1951G>											
p.(Gly651Cys)	Т	1	0	0.9999	Gly	None	Other x1, LP		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.1874G>	I T										
p.(Gly625Glu)	А	1	0.002	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	
	c.1786G>											
p.(Gly596Arg)	А	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
p.(Gly551TrpfsTer												
8)	c.1649dup	1			Gly	None	LP		LP (PM1,PM2,PP2,PP3)	YES	1	

	c.1634G>											
p.(Gly545Asp)	А	1	0	0.9999	Gly	None	B,VUS		LP (PM1,PM2,PP2,PP3)	NO	0	
	c.1598G>											T
p.(Gly533Asp)	А	0.999	0	0.9982	Gly	None	LP, P	Ρ*	LP (PM1,PM2,PP2,PP3,PP5)	YES	2	
	c.1571G>					1/						Π
p.(Gly524Glu)	А	0.576	0.002	0.9999	Gly	249,290	LB		LP (PM1,PM2,PP2,PP3)	NO	0	
p.(Gly503Trpfs												Τ
Ter12)	c.1505dup	1			Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.1499G>											
p.(Gly500Val)	Т	1	0.03	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	
	c.1499G>											
p.(Gly500Ala)	С	1	0.186 Tol)	0.9998	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	NO	0	
	c.1435G>			0.9975		106/		Con-				
p.(Gly479Arg)	С	0	0.466 (Tol)	(Pol)	Gly	280,814		flicting*	VUS (PM1,PM2,PP2, BP4)	NO	2	1
	c.1424G>											
p.(Gly475Ala)	С	0.991	0	0.9999	Gly	None	NO	LP	LP (PM1,PM2,PM5,PP2,PP3)	YES	0	1
	c.1352G>											
p.(Gly451Asp)	А	1	0.002	0.9999	Gly	None	Other x1 VUS		LP (PM1,PM2,PP2,PP3)	YES	1	
	c.1324G>											
p.(Gly442Ser)	A	0.997	0.06	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	_
	c.1276G>					4/						
^{GN} p.(Gly426Arg)	A	1	0.001	0.9999	Gly	248,782	NO		LP (PM1,PM2,PP2,PP3)	YES	0	_
	c.1205G>					5/						
^{GN} p.(Gly402Asp)	A	1	0.003	0.9999	Gly	247,742	NO		LP (PM1,PM2,PP2,PP3)	YES	0	+
(c.1145G>		-								_	
p.(Gly382Ala)	C	0.999	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	_
	c.1135G>											
p.(Gly379Arg)	A	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	+
	c.1136G>	0.000		0.0000	CI.	Nex -	NO		10 (0141 0142 002 002)	VEC		
p.(Gly379Ala)	C	0.999	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	+
GNn (Chazacha)	c.1118G>	4	_	0.0000	CIV	2/		P*		VEC	2	
^{GN} p.(Gly373Glu)	A	1	0	0.9999	Gly	248,186	LP, VUS	P*	LP (PM1,PM2,PP2,PP3,PP5)	YES	2	+
	c.1004G> T	1	0	1	Ch/	None	NO		LD (DN41 DN42 DD2)	YES	1	
p.(Gly335Val)	c.923G>A	1	0	1 0.9999	Gly Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	1	_
p.(Gly308Glu)	c.923G>A		0.004	0.9999	,	None	NO		LP (PM1,PM2,PP2,PP3)	YES		_
p.(Gly291Glu)		1	0.004	0.9999	Gly Gly	None	Other x 1 VUS		LP (PM1,PM2,PP2,PP3)	YES	0	_
p.(Gly252Ser)	c.754G>A		0.009	0.9999	Giy	None			LP (PM1,PM2,PM5,PP2,PP3)	152	0	╉
GNp (Glu100Arg)	c.568G>C	1	0	1	Gly	1/ 249,424	NO		LP (PM1,PM2,PP2,PP3)	YES	1	1
^{GN} p.(Gly190Arg)	1.308020	1	0	1	Gly	249,424 None	NO		LF (FIVII, FIVIZ, FFZ, FF3)	YES	0	_

						4/	VUS; Other x2		LP			
p.(Gly161Val)	c.482G>T	1	0	1	Gly	249,086	LP, VUS	LP*	(PM1,PM2,PM5,PP2,PP3,PP5)	YES	0	2
						3/			LP			
^{GN} p.(Gly161Arg)	c.481G>C	1	0	1	Gly	280,524	NO	LP*	(PM1,PM2,PM5,PP2,PP3,PP5)	YES	0	2
p.(Gly143Asp)	c.428G>A	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
						1/						
^{GN} p.(Gly137Ser)	c.409G>A	1	0	1	Gly	248,804	LP, VUS		LP (PM1,PM2,PP2,PP3)	YES	0	1
p.(Gly122Ser)	c.364G>A	1	0	0.9999	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
						14/						
p.(Gly113Asp)	c.338G>A	1	0	0.9999	Gly	257,452	NO	VUS	LP (PM1,PM2,PP2,PP3)	YES	0	2
						1/						
^{GN} p.(Gly98Ser)	c.292G>A	1	0	0.9999	Gly	247,318	NO		LP (PM1,PM2,PP2,PP3)	YES	0	3
p.(Gly92Glufs												
Ter2)	c.275del	1	0	1	Gly	None	NO		LP (PM1,PM2,PP2,PP3)	YES	0	1
Total number wit	th a predicted	patho	genic varian ⁻	t with an	d with	out haema	turia respectivel	у			19	95
Total number wit	th haematuria	and w	ithout haem	aturia re	spectiv	/elv					2,221	37,200

Variants with any evidence not consistent with pathogenicity are highlighted in blue. Otherwise notes are the same as for Suppl Table 3.

Protein consequence	Transcript	Affected individuals/ total allele count	PP2	SIFT	Mutation taster	Conserved	Previously reported; or substitution with other residue (LOVD)	ClinVar	Varsome	Alamut	Predicted pathogenic
•	•			Damaging	Disease		NO		Likely		
				(0.047)	causing				pathogenic		NO
		1M/			(0.99)				(PM1, PM2,		NO
^{GN} p.(Gly42Ser)	c.124G>A	10,563	Benign (0.013)			Gly			PP2, PP3)	Weak	
			Prob	Damaging	Disease			Pathogenic	Pathogenic		
^{GN} p.(Gly624Asp)	c.1871G>A	1F/	damaging	(0.119)	causing			**	(PM1, PP2,		YES
		10,563	(0.999)		(1.00)	Gly	Slajpah, 2007		PP3, PP5)	Strong	
				Damaging	Disease		NO		Likely		
			Probably	(0.00)	causing				pathogenic		YES
p.(Gly905Ser)	c.2713G>A		damaging		(1.00)				(PM1, PM2,	_	123
		1F/10,563	1.00			Gly			PP2, PP3)	Strong	
				Damaging	Disease				Benign		
			Probably	(0.002)	causing			Conflicting	(PM1, PP2,		NO
^{GN} p.(Gly953Val)	c.2858G>T	2M/	damaging		(1.00)		Knebelmann,	B, LB, VUS	PP3,PP5,		NO
		10,563	1.00			Gly	1996		BS1, BS2)	Weak	
				Damaging	Disease		NO		Likely		
				(0)	causing				pathogenic		
					(0.999)				(PM1,		NO
	c.3220G>C	1M/							PM2,PP2,P		
^{GN} p.(Gly1074Arg)		10,563	Benign (0.09)			Gly			P3)	Weak	
				Damaging	Disease		NO		Likely		
				(0.06)	causing				pathogenic		
()) (e) (e) (e) (e)					(1.00)				(PM1, PM2,		NO
^{GN} p.(Gly1244Ser)	c.3730G>A	1F/							PM5,		
		10,563	Benign (0.315)			Gly			PP2,PP3)		
				Damaging	Disease				Likely	Weak	
				(0)	causing				pathogenic,		
CN (2)			Probably		(1.00)		LOVD,		PM2,PM3,P		YES
^{GN} p.(Gly1424Ser)	c.4270G>A	1M/	damaging				p.(Gly1424Glu),		M5,PP2,PP		
		10,563	1.00			Gly	Zhang, 2011		3		

Suppl Table 6: Predicted pathogenic variants in COL4A5 in the Exome Variant Server database

Evidence against pathogenicity is highlighted in blue. Three variants were predicted to be pathogenic in the cohort of 7042 individuals; p.(Gly624Asp), p.(Gly905Ser); and p.(Gly1424Ser). This cohort had no frameshift, termination codons or splice site variants. M male; F female. PP2 Polyphen-2, SIFT, Mutation taster computational tools assess pathogenicity. Conserved residue in vertebrates. ClinVar – star system used for quality of assertion * to ****. P Pathogenic, LP, Likely pathogenic, B – benign, LB likely benign, VUS – variant of uncertain significance. PVS, PM, PP, BS are ACMG/AMP criteria referring to criteria for P pathogenicity; and B benign nature; p.(Leu691Phefs*7)¹ where ¹read depth = 14 was excluded where all other read depths were > 30.

Protein onsequence	Transcript	Affected individuals/ total allele count = 125,568	PP2	SIFT	Mutation taster	Conserved	Previous reports of variant, or other variants at this location (LOVD)	ClinVar	Varsome	Predicted pathogenicity
In gnomAD	c.231+2T>C	1F			Disease- causing			Not found	Pathogenic (PVS1, PM2,PP3)	YES
	c.1024_103 2+22delCCT GGACTTGT AAGTTTTTT TTTTTTTAG TCT	1F			Disease- causing			Not found	Pathogenic (PVS1,PM2,PP3)	YES
p.(Gly57Arg)	c.169G>C	1F	1.00	Damaging (0)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly111Ser)	c.331G>A	1F	1.00	Damaging (0)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
^{GN} p.(Gly279Arg	c.835G>C	2F	0.999	Damaging (0.003)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly282Ser)	c.844G>A	1F	1.00	Damaging (0)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
^{GN} p.(Gly512Glu)	c.1535G>A	2F	1.00	Damaging	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
^{GN} p.(Gly624Asp)	c.2073G>A	2M, 7F	0.99	Damaging (0)	Disease- causing	Gly	YES	Pathogenic **	Pathogenic (PM1, PP2, PP3, PP5)	YES
^{GN} p.(Gly752Val)	c.2255G>T	1F	1.00	Damaging (0.031)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly769Glu)	c.2306G>A	1F	1.00	Damaging (0)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PM5,PP2 ,PP3)	YES
p.(Gly817Arg)	c.2449G>C	2M, 4F	1.00	Damaging (0.001)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly905Ser)	c.2713G>A	2F	1.00	Damaging (0.001)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PM5,PP2 ,PP3)	YES

Suppl Table 7: Predicted pathogenic variants in COL4A5 in the TOPMed database

				Damaging (0)	Disease- causing			Not found	Pathogenic (PVS1, PM1,PM2,PM5,	YES
p.(Gly973Ser)	c.2917G>A	1F	1.00		_	Gly	NO		PP2,PP3)	
p.(Gly1069Val)	c.3206G>T	1F	1.00	Damaging (0)	Disease- causing	Gly	VUS	Conflicting *	Likely pathogenic (PM1,PM2,PP2,PP3)	NO
p.(Gly1113Ala)	c.3338G>C	1F	1.00	Damaging (0.01)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly1119Ala)	c.3356G>C	1F	0.999	Damaging (0)	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly1153Arg)	c.3457G>C	3M, 2F	0.077	Tol (0.515)	Pol (0.9981)	Gly	NO	Not found	VUS (PM1,PP2,BP4)	NO
p.(Gly1303Cys)	c.3907G>T	1M, 1F	1.00	0	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly1330Ser)	c.3988G>A	1F	0.998	0	Disease- causing	Gly	NO	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	YES
p.(Gly1339Ala)	c.4016>C	1M, 1F	1.00	Damaging (0.007)	Disease- causing	Gly	NO	Not found	Pathogenic (PM1,PM2,PM5,PP2 ,PP3)	YES
^{GN} p.(Gly1424Ser)	c.4270G>A	3F	Probably damaging 0.998	Damaging (0)	Disease causing (1.00)	Gly	LOVD, p.(Gly1424Glu), Zhang, 2011	Not found	Likely pathogenic (PM1,PM2,PM5,PP2 ,PP3)	YES
		6M,34F in 83,712 = 1/2093								

^{GN} also in gnomAD

Journal of the American Society of Nephrology

Suppl Table 8: Mitigating features for the clinical effects of predicted pathogenic *COL4A5* variants resulting in position 1 Gly substitutions in gnomAD: associations with gender, location, and replacement residues

				Adjacent to non- collagenous domain	Substitution with Ala, Ser,
Mutation	Alleles	Gender	Exons 1-20	or interruption	Cys
p.(Gly69Arg)	1	F	Yes		
p.(Gly84Glu)	1	F	Yes		
p.(Gly105Ala)	1	М	Yes		Yes
p.(Gly114Ala)	1	F	Yes		Yes
p.(Gly126Glu)	1	F	Yes		
p.(Gly201Ala)	1	Μ	Yes		Yes
p.(Gly279Ala)	1	Μ	Yes		Yes
p.(Gly283Val)	1	F	Yes	Yes	
p.(Gly286Cys)	1	F	Yes		Yes
p.(Gly356Glu)	1	М	Yes	Yes	
p.(Gly356Ala)	1	F	Yes	Yes	Yes
p.(Gly512Glu)*	1	Μ			
p.(Gly536Ser)	1	F			Yes
		M (n=4), F			
p.(Gly624Asp)	16	(n=12)		Yes	
p.(Gly656Ser)	1	М		Yes	Yes
p.(Gly702Ser)	1	F			Yes
p.(Gly752Val)	2	M (n=2)		Yes	
p.(Gly787Ala)	1	F			Yes
p.(Gly822Glu)*	1	Μ			
p.(Gly893Val)	1	F			
p.(Gly967Arg)	1	F			
p.(Gly1054Asp)*	1	Μ			
p.(Gly1134Cys)	1	F			Yes
p.(Gly1170Ser)	1	F			Yes
p.(Gly1185Ser)	1	F			Yes
p.(Gly1249Arg)	1	F		Yes	
p.(Gly1282Glu)	1	М			
p.(Gly1300Ala)	1	F			Yes
p.(Gly1303Ala)	1	М			Yes
p.(Gly1321Val)	1	F			
p.(Gly1324Glu)	1	F			
p.(Gly1333Cys)	1	М			Yes
p.(Gly1394Cys)	2	F (n=2)			Yes
p.(Gly1424Ser)	1	F			Yes
N=34	51	17M, 34F	N=11	N=7	N=18

M male, F female * variants where there were no biochemical features potentially mitigating clinical phenotype

Suppl Table 9: Variants in COL4A3 and COL4A4 in gnomAD with inconsistent assessments subsequently excluded from population frequency	
studies	

hg19	rs ID	Variant	Trans cript	PP2	SIFT	мт	Cons erved in verte- brates	Clin Var	Varsome	gnomad	Cohort size	A	L	AJ	EA	F	EUR	ο	SA
COL4A3																			<u>.</u>
228102723	rs13424243	p.(Gly43Arg)	c.127G>A	1	DEL	Р	Ser	Benign	VUS (PM1,PM2,PP2,BP4)	3	280794	0	0	1	0	0	2	0	0
228102723	rs13424243	p.(Gly43Arg)	c.127G>C	1	DEL	Р	Ser	Benign	Benign (PM1,PP2,BA1,BP4,BP6)	80620	280794	7524	7749	3493	740	8390	46200	2242	428
228102723	rs13424243	p.(Gly43Trp)	c.127G>T	1	DEL	Р	Ser	Benign	VUS (PM1,PM2,PP2,BP4)		280794	1	0	0	0	0	1	0	0
228102724	rs776294835	p.(Gly43Glu)	c.128G>A	1	DEL	Р	Ser	Not found	VUS (PM1,PM2,PP2,BP4)	3	249528	3	0	0	0	0	0	0	0
228102732	rs200866082	p.(Gly46Arg)	c.136G>A	1	DEL	DC	Gly	Likely benign	Likely pathogenic (PM1,PM2,PP2,PP3,BP6)	61	280882	57	3	0	0	0	0	1	0
228131759	rs745472969	p.(Gly487Arg)	c.1459G>C	1	DEL	0.606 - P	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	1	249514	0	0	0	0	0	1	0	0
228142243	rs1331805495	p.(Gly700Val)	c.2099G>T	0.977	TOL (0.06)	DC	Gly	Not found	Likely pathogenic (PM1,PM2,PP2,PP3)	1	245134	0	0	0	0	0	1	0	0
228145668	rs774838919	p.(Gly812Ser)	c.2434G>A	0.339	TOL (0.21)	Р	Cys	Not found	VUS (PM1, PM2,PP2,BP4)	10	178112	0	4	0	0	0	5	1	0
228142227	rs200287952	p.(Gly695Arg)	c.2083G>A	1	TOL 0.08	DC	Gly	Pathogenic	Pathogenic (PM1,PM2,PP2,PP3,PP5)	31	278152	1	0	0	0	0	27	3	0
228104886	rs184730597	p.(Gly58Ser)	c.172G>A	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	6	243384	0	3	0	0	0	2	1	0
228112275	rs775373641	p.(Gly148Val)	c.443G>T	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	4	280874	0	0	1	0	0	3	0	0
228113159	rs764451365	p.(Gly157Arg)	c.469G>C		DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	4	249350	0	0	0	0	0	1	1	2
228131759	rs745472969	,	c.1459G>A		DEL		Gly	VUS	Likely pathogenic (PM1,PM2,PM5,PP2,PP3)		280912	0	15	0	0	0	10	1	5
228149007	rs1265432530	1, , , ,	c.2827G>A		DEL		Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	2	249332	0	0	0	1	0	1	0	0
228145007		p.(Gly1328Ala)			DEL	DC	Gly	VUS	Likely pathogenic (PM1.PM2.PP2.PP3)	1	249382	0	0	0	0	0	0	1	0
COL4A4	13372237107	p.(0) y 1020/10/	2.3303070				Giy	105		-	273302		0		v	, v	_ <u> </u>	1 -	
227984654	rs1370340334	p.(Gly110Ala)	c.329G>C	1	TOL	DC	Gly	Not found	Likely pathogenic (PM1,PM2, PP2,PP3)	1	221310	0	0	0	0	0	1	0	0
227984645	rs766085522	p.(Gly113Asp)	c.338G>A	1	TOL	DC	Gly	Not found	Likely pathogenic (PM1,PM2, PP2,PP3)	14	257452	9	5	0	0	0	0	0	0
227983440	rs377511303	p.(Gly137Asp)	c.410G>A	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2, PP2,PP3)	2	248802	2	0	0	0	0	0	0	0
227983392	rs773360119	p.(Gly153Val)	c.458G>T	0.712	DEL	DC	Gly	Not found	VUS (PM1,PM2,PP2,BP4)	2	249180	0	0	0	0	0	2	0	0

								Conflicting;	Likely pathogenic										Τ
227958987	rs1026613471	p.(Gly408Glu)	c.1223G>A	1	DEL	DC	Gly	Benign	(PM1,PM2,PP2,PP3)	6	248574	0	0	5	0	0	1	0	0
227954608	rs202210475	p.(Gly479Arg)	c.1435G>0	0	TOL	Р	Gly	Conflcting;VUS	VUS (PM1,PM2,PP2,BP4)	106	280814	0	6	75	0	0	16	8	1
227946893	rs1800516	p.(Gly545Ala)	c.1634G>0	1	DEL	Р	Gly	Benign	Benign (PM1,PP2, PP3,BS1,BS2,BP6)	7694	280884	798	675	446	0	548	4724	262	241
227924914	rs781014928	p.(Gly701Val)	c.2102G>1	0.82	TOL	DC	Gly	Not found	Likely pathogenic (PM1,PM2, PP2,PP3)	1	248786	0	0	0	0	0	0	0	1
227922308	rs760803228	p.(Gly798Ser)	c.2392G>A	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	3	280816	0	0	0	0	0	3	0	0
227920820	rs752296059	p.(Gly853Arg)	c.2557G>A	0	TOL	Р	Gly	Not found	VUS (PM1,PM2,PP2,BP4)	1	249324	0	0	0	1	0	0	0	0
227915847	rs13027659	p.(Gly999Glu)	c.2996G>A	1	DEL	DC	Gly	Conflicting; benign; likely benign	VUS (PM1, PP2,PP3,PP5, BS1,BS2)	3321	280922	68	278	27	0	228	2508	104	108
227915821	rs371172166	p.(Gly1008Arg)	c.3022G>A	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	9	280942	6	2	0	0	0	1	0	0
227915799	rs764323652	p.(Gly1015Glu)	c.3044G>A	1	DEL	DC	Gly	Conflicting; Likely pathogenic; VUS	Likely pathogenic (PM1,PM2,PP2,PP3)	14	280944	0	0	0	0	0	14	0	0
227915754	rs772699709	p.(Gly1030Val)	c.3089G>1	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1, PM2,PM5,PP2,PP3,PP5)	1	249562	0	0	0	0	0	1	0	0
227983440	rs377511303	p.(Gly137Asp)	c.410G>A	1	DEL	DC	Gly	VUS	Likely pathogenic (PM1,PM2, PP2,PP3)	2	248802	2	0	0	0	0	0	0	0
227876903	rs779769090	p.(Gly1443Arg)	c.4327G>A	0.005	DEL (0.22)	Р	Gly	Not found	VUS (PM1,PM2,PP2,BP4)	1	249498	0	0	0	0	0	1	0	0
227876903	rs779769090	p.(Gly1443Arg)	c.4327G>0	0.005	DEL (0.22)	Ρ	Gly	Not found	VUS (PM1,PM2,PP2,BP4)	13	249498	0	0	0	0	0	0	0	13
227875175	rs1287040507	p.(Gly1459Val)	c.4376G>T	0.627	DEL	Р	Gly	Not found	VUS (PM1,PM2,PP2,BP4)	2	274180	0	0	0	0	0	2	0	0

Evidence supporting pathogenicity is highlighted in red; and not supporting pathogenicity is in blue. PP2, Polyphen-2, SIFT, MT Mutation taster. PP2 scores >0.8 indicate Pathgoenic or Likely Pathogenic. SIFT scores DEL for deleterious, TOL for tolerated. MT scores DC for disease-causing and P for polymorphism. Varsome online tool to assess ACMG criteria (varsome.com), gnomad variant database used to assess variant prevalence (approximate population n= 256, 562 for *COL4A3*, and 233,529 for *COL4A4*). Cohort size varied for different variants, A African (n = 15,944) L Latino (n=32,544), AJ Ashenazi Jewish (n=9528), EA East Asian (n=17,021), F Finnish (n=21,559), Eur European (non-Finnish, n=111,786), Other (n=6112), SE South Asian (n=28,471)

Of especial interest were p.(Gly545Ala) and p.(Gly999Glu) in *COL4A4*, which were not predicted pathogenic and excluded from further analysis. The p.(Gly545Ala) variant was found 7,626 times in gnomAD, including 145 times in the homozygous form. It was considered pathogenic in two out of three computational tools, affected a conserved residue, but had Benign assessments from ClinVar and Varsome (based on one moderate (PM1) and 2 supporting criteria for pathogenic (PP2, PP3) and two strong (BS1,BS2) and one supporting criteria for benign (BP6)).

The p.(Gly999Glu) variant was found 3,259 times, including 33 times in the homozygous form. It was considered pathogenic in all three computational tools, and affected a conserved residue, but was considered a Variant of Uncertain Significance by both ClinVar and Varsome based on one moderate (PM1), and three supporting (PP2,PP3 and PP5) criteria for pathogenicity, and two strong criteria for benign (BS1 and BS2).

Gene	Variant	Transcript	Total	African	Latino	Ashkenazi	East	Eur	Eur	Other	South
							Asian	(Finnish)	(non-		Asian
									Finnish)		
COL4A3	None										
COL4A4	p.(Gly445Ala)	c.1334G>C	22	19					3		
	p.(Gly481Ser)	c.1441G>A	21		21						
	p.(Gly816Glu)	c.2447G>A	24				24				
	p.(Gly1005Glu)	c.3014G>A	25	1	23				1		
	p.(Gly1178Ser)	c.3532G>A	24		3			3	16	2	
	p.(Gly774Arg)	c.2320G>C	19					1	5	13	
	p.(Ser969Ter)	c.2906C>G	18	1					16	1	

Suppl Table 10: Predicted pathogenic founder variants in COL4A3 and COL4A4 in different ancestries in gnomAD

Variants were arbitrarily designated founder variants if they resulted in a position 1 Gly substitution, frameshift, nonsense or canonical splice variant that was predicted to be pathogenic and occurred \geq 18 times in gnomAD

Suppl Table 11: Estimated population frequencies for predicted pathogenic heterozygous, compound heterozygous, and digenic variants

COL4A3	COL4A4	Classification	Frequency	Total population frequency*
+/+	+/+	Wildtype	9.91 x 10 ⁻¹	9.91 x 10 ⁻¹
				or 99 in 100
+/+	+/-	Heterozygous	2.45 x 10 ⁻³	9.41 x 10 ⁻³
,	,	predicted pathogenic		
+/+	-/+	Heterozygous	2.45 x 10 ⁻³	or one in 106
		predicted pathogenic		
+/-	+/+	Heterozygous	2.26 x 10 ⁻³	
		predicted pathogenic		
-/+	+/+	Heterozygous	2.26 x 10 ⁻³	
		predicted pathogenic		
+/-	+/-	Digenic predicted	5.58 x 10⁻ ⁶	2.23 x 10⁻⁵
		pathogenic variants		
+/-	-/+	Digenic predicted	5.58 x 10⁻ ⁶	or one in 44,793
		pathogenic variants		
-/+	+/-	Digenic predicted	5.58 x 10⁻ ⁶	
		pathogenic variants		
-/+	-/+	Digenic predicted	5.58 x 10⁻ ⁶	
		pathogenic variants		
+/+	-/-	Compound	6.06 x 10 ⁻⁶	1.13 x 10 ⁻⁵
		heterozygous predicted		
		pathogenic variants		or one in
+/-	-/-	Compound	1.38 x 10 ⁻⁸	88,866 individuals
		heterozygous predicted		
		pathogenic variants		
-/+	-/-	Compound	1.38 x 10 ⁻⁸	
		heterozygous predicted		
		pathogenic variants		
-/-	+/+	Compound	5.14 x 10 ⁻⁶	
		heterozygous predicted		
		pathogenic variants		
-/-	+/-	Compound	1.27 x 10⁻ ⁸	
		heterozygous predicted		
		pathogenic variants		
-/-	-/+	Compound	1.27 x 10 ⁻⁸	
		heterozygous predicted		
		pathogenic variants		_
-/-	-/-	Compound	3.14 x 10 ⁻¹¹	
		heterozygous predicted		
		pathogenic variants he frequencies \have been calcula		

+ wildtype, - variant allele. The frequencies \have been calculated from the sum of the likelihood of the individual combinations of alleles. These calculations are based on the number of predicted pathogenic

variants in the mean alleles examined that is 559/245,889 for *COL4A3* and 577/233,916 for *COL4A4* and assume that *COL4A3* and *COL4A4* variants occur together independently. If all predicted pathogenic variants are pathogenic, then heterozygous predicted pathogenic variants correspond to Thin basement membrane nephropathy or AD Alport syndrome; digenic predicted pathogenic variants correspond to digenic Alport syndrome; and compound heterozygous pathogenic variants correspond to the compound heterozygous form of AR Alport syndrome. It is not possible to use this method to calculate how commonly homozygous forms of predicted pathogenic variants occur because they are usually the result of consanguineous relationships and do not occur by chance.

References

- 1. Gubler, M, Levy, M, Broyer, M, Naizot, C, Gonzales, G, Perrin, D, Habib, R: Alport's syndrome. A report of 58 cases and a review of the literature. *Am J Med*, 70: 493-505, 1981.
- Barker, DF, Hostikka, SL, Zhou, J, Chow, LT, Oliphant, AR, Gerken, SC, Gregory, MC, Skolnick, MH, Atkin, CL, Tryggvason, K: Identification of mutations in the COL4A5 collagen gene in Alport syndrome. *Science*, 248: 1224-1227, 1990.
- Mochizuki, T, Lemmink, HH, Mariyama, M, Antignac, C, Gubler, MC, Pirson, Y, Verellen-Dumoulin, C, Chan, B, Schroder, CH, Smeets, HJ, et al.: Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. *Nat Genet*, 8: 77-81, 1994.
- 4. Buzza, M, Wilson, D, Savige, J: Segregation of hematuria in thin basement membrane disease with haplotypes at the loci for Alport syndrome. *Kidney Int*, 59: 1670-1676, 2001.
- 5. Buzza, M, Dagher, H, Wang, YY, Wilson, D, Babon, JJ, Cotton, RG, Savige, J: Mutations in the COL4A4 gene in thin basement membrane disease. *Kidney Int*, 63: 447-453, 2003.
- 6. Savige, J: Should We Diagnose Autosomal Dominant Alport Syndrome When There Is a Pathogenic Heterozygous COL4A3 or COL4A4 Variant? *Kidney Int Rep*, **3:** 1239-1241, 2018.
- 7. Savige, J, Rana, K, Tonna, S, Buzza, M, Dagher, H, Wang, YY: Thin basement membrane nephropathy. *Kidney Int*, 64: 1169-1178, 2003.
- Mencarelli, MA, Heidet, L, Storey, H, van Geel, M, Knebelmann, B, Fallerini, C, Miglietti, N, Antonucci, MF, Cetta, F, Sayer, JA, van den Wijngaard, A, Yau, S, Mari, F, Bruttini, M, Ariani, F, Dahan, K, Smeets, B, Antignac, C, Flinter, F, Renieri, A: Evidence of digenic inheritance in Alport syndrome. J Med Genet, 52: 163-174, 2015.
- Voskarides, K, Damianou, L, Neocleous, V, Zouvani, I, Christodoulidou, S, Hadjiconstantinou, V, Ioannou, K, Athanasiou, Y, Patsias, C, Alexopoulos, E, Pierides, A, Kyriacou, K, Deltas, C: COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol, 18: 3004-3016, 2007.
- 10. Wickman, L, Hodgin, JB, Wang, SQ, Afshinnia, F, Kershaw, D, Wiggins, RC: Podocyte Depletion in Thin GBM and Alport Syndrome. *PLoS One*, 11: e0155255, 2016.
- 11. Baldovino, S, Moliner, AM, Taruscio, D, Daina, E, Roccatello, D: Rare Diseases in Europe: from a Wide to a Local Perspective. *Isr Med Assoc J*, 18: 359-363, 2016.
- 12. Hertz, JM, Thomassen, M, Storey, H, Flinter, F: Clinical utility gene card for: Alport syndrome update 2014. *Eur J Hum Genet*, 23, 2015.
- 13. Hasstedt, SJ, Atkin, CL: X-linked inheritance of Alport syndrome: family P revisited. *Am J Hum Genet*, 35: 1241-1251, 1983.
- 14. Persson, U, Hertz, JM, Wieslander, J, Segelmark, M: Alport syndrome in southern Sweden. *Clin Nephrol*, 64: 85-90, 2005.
- 15. Pajari, H, Kaariainen, H, Muhonen, T, Koskimies, O: Alport's syndrome in 78 patients: epidemiological and clinical study. *Acta Paediatr*, 85: 1300-1306, 1996.
- 16. Dodge, WF, West, EF, Smith, EH, Bruce, H, 3rd: Proteinuria and hematuria in schoolchildren: epidemiology and early natural history. *J Pediatr*, 88: 327-347, 1976.
- 17. Ritchie, CD, Bevan, EA, Collier, SJ: Importance of occult haematuria found at screening. *Br Med J (Clin Res Ed)*, 292: 681-683, 1986.
- 18. Dische, FE, Anderson, VE, Keane, SJ, Taube, D, Bewick, M, Parsons, V: Incidence of thin membrane nephropathy: morphometric investigation of a population sample. *J Clin Pathol*, 43: 457-460, 1990.
- 19. Savige, J, Gregory, M, Gross, O, Kashtan, C, Ding, J, Flinter, F: Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. *J Am Soc Nephrol*, 24: 364-375, 2013.
- 20. Jais, JP, Knebelmann, B, Giatras, I, De Marchi, M, Rizzoni, G, Renieri, A, Weber, M, Gross, O, Netzer, KO, Flinter, F, Pirson, Y, Verellen, C, Wieslander, J, Persson, U, Tryggvason, K, Martin, P, Hertz, JM, Schroder, C, Sanak, M, Krejcova, S, Carvalho, MF, Saus, J, Antignac, C, Smeets, H, Gubler, MC: X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. *J Am Soc Nephrol*, 11: 649-657, 2000.
- 21. Jais, JP, Knebelmann, B, Giatras, I, De Marchi, M, Rizzoni, G, Renieri, A, Weber, M, Gross, O, Netzer, KO, Flinter, F, Pirson, Y, Dahan, K, Wieslander, J, Persson, U, Tryggvason, K, Martin, P, Hertz, JM, Schroder, C, Sanak, M, Carvalho, MF, Saus, J, Antignac, C, Smeets, H, Gubler, MC: X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study. *J Am Soc Nephrol*, 14: 2603-2610, 2003.
- 22. Savige, J, Colville, D, Rheault, M, Gear, S, Lennon, R, Lagas, S, Finlay, M, Flinter, F: Alport Syndrome in Women and Girls. *Clin J Am Soc Nephrol*, 11: 1713-1720, 2016.

23. Savige, J, Ariani, F, Mari, F, Bruttini, M, Renieri, A, Gross, O, Deltas, C, Flinter, F, Ding, J, Gale, DP, Nagel, M, Yau, M, Shagam, L, Torra, R, Ars, E, Hoefele, J, Garosi, G, Storey, H: Expert consensus guidelines for the genetic diagnosis of Alport syndrome. *Pediatr Nephrol*, 2018.

- 24. Richards, S, Aziz, N, Bale, S, Bick, D, Das, S, Gastier-Foster, J, Grody, WW, Hegde, M, Lyon, E, Spector, E, Voelkerding, K, Rehm, HL, Committee, ALQA: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med*, 17: 405-424, 2015.
- 25. Myllyharju, J, Kivirikko, KI: Collagens and collagen-related diseases. Ann Med, 33: 7-21, 2001.
- 26. Mariyama, M, Leinonen, A, Mochizuki, T, Tryggvason, K, Reeders, ST: Complete primary structure of the human alpha 3(IV) collagen chain. Coexpression of the alpha 3(IV) and alpha 4(IV) collagen chains in human tissues. *J Biol Chem*, 269: 23013-23017, 1994.
- 27. Leinonen, A, Mariyama, M, Mochizuki, T, Tryggvason, K, Reeders, ST: Complete primary structure of the human type IV collagen alpha 4(IV) chain. Comparison with structure and expression of the other alpha (IV) chains. *J Biol Chem*, 269: 26172-26177, 1994.
- 28. Zhou, J, Hertz, JM, Leinonen, A, Tryggvason, K: Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient. *J Biol Chem*, 267: 12475-12481, 1992.
- 29. Demosthenous, P, Voskarides, K, Stylianou, K, Hadjigavriel, M, Arsali, M, Patsias, C, Georgaki, E, Zirogiannis, P, Stavrou, C, Daphnis, E, Pierides, A, Deltas, C, Hellenic Nephrogenetics Research, C: X-linked Alport syndrome in Hellenic families: phenotypic heterogeneity and mutations near interruptions of the collagen domain in COL4A5. *Clin Genet*, 81: 240-248, 2012.
- 30. Lanktree, MB, Haghighi, A, Guiard, E, Iliuta, IA, Song, X, Harris, PC, Paterson, AD, Pei, Y: Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J Am Soc Nephrol, 29: 2593-2600, 2018.
- 31. Lek, M, Karczewski, KJ, Minikel, EV, Samocha, KE, Banks, E, Fennell, T, O'Donnell-Luria, AH, Ware, JS, Hill, AJ, Cummings, BB, Tukiainen, T, Birnbaum, DP, Kosmicki, JA, Duncan, LE, Estrada, K, Zhao, F, Zou, J, Pierce-Hoffman, E, Berghout, J, Cooper, DN, Deflaux, N, DePristo, M, Do, R, Flannick, J, Fromer, M, Gauthier, L, Goldstein, J, Gupta, N, Howrigan, D, Kiezun, A, Kurki, MI, Moonshine, AL, Natarajan, P, Orozco, L, Peloso, GM, Poplin, R, Rivas, MA, Ruano-Rubio, V, Rose, SA, Ruderfer, DM, Shakir, K, Stenson, PD, Stevens, C, Thomas, BP, Tiao, G, Tusie-Luna, MT, Weisburd, B, Won, HH, Yu, D, Altshuler, DM, Ardissino, D, Boehnke, M, Danesh, J, Donnelly, S, Elosua, R, Florez, JC, Gabriel, SB, Getz, G, Glatt, SJ, Hultman, CM, Kathiresan, S, Laakso, M, McCarroll, S, McCarthy, MI, McGovern, D, McPherson, R, Neale, BM, Palotie, A, Purcell, SM, Saleheen, D, Scharf, JM, Sklar, P, Sullivan, PF, Tuomilehto, J, Tsuang, MT, Watkins, HC, Wilson, JG, Daly, MJ, MacArthur, DG, Exome Aggregation, C: Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, 536: 285-291, 2016.
- 32. The National Genomics Research and Healthcare Knowledgebase v5, Genomics England. 5, 2019.
- 33. van der Ven, AT, Connaughton, DM, Ityel, H, Mann, N, Nakayama, M, Chen, J, Vivante, A, Hwang, DY, Schulz, J, Braun, DA, Schmidt, JM, Schapiro, D, Schneider, R, Warejko, JK, Daga, A, Majmundar, AJ, Tan, W, Jobst-Schwan, T, Hermle, T, Widmeier, E, Ashraf, S, Amar, A, Hoogstraaten, CA, Hugo, H, Kitzler, TM, Kause, F, Kolvenbach, CM, Dai, R, Spaneas, L, Amann, K, Stein, DR, Baum, MA, Somers, MJG, Rodig, NM, Ferguson, MA, Traum, AZ, Daouk, GH, Bogdanovic, R, Stajic, N, Soliman, NA, Kari, JA, El Desoky, S, Fathy, HM, Milosevic, D, Al-Saffar, M, Awad, HS, Eid, LA, Selvin, A, Senguttuvan, P, Sanna-Cherchi, S, Rehm, HL, MacArthur, DG, Lek, M, Laricchia, KM, Wilson, MW, Mane, SM, Lifton, RP, Lee, RS, Bauer, SB, Lu, W, Reutter, HM, Tasic, V, Shril, S, Hildebrandt, F: Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. *J Am Soc Nephrol*, 29: 2348-2361, 2018.
- 34. Biesecker, LG, Harrison, SM, ClinGen Sequence Variant Interpretation Working, G: The ACMG/AMP reputable source criteria for the interpretation of sequence variants. *Genet Med*, 20: 1687-1688, 2018.
- 35. Richards, CS, Aziz, N, Bale, S, Bick, D, Das, S, Gastier-Foster, J, Grody, WW, Hegde, M, Lyon, E, Spector, E, Voelkerding, K, Rehm, HL, Group, AAIoSVW: Response to Biesecker and Harrison. *Genet Med*, 20: 1689-1690, 2018.
- 36. Abou Tayoun, AN, Pesaran, T, DiStefano, MT, Oza, A, Rehm, HL, Biesecker, LG, Harrison, SM, ClinGen Sequence Variant Interpretation Working, G: Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. *Hum Mutat*, 39: 1517-1524, 2018.
- 37. Hashimura, Y, Nozu, K, Kaito, H, Nakanishi, K, Fu, XJ, Ohtsubo, H, Hashimoto, F, Oka, M, Ninchoji, T, Ishimori, S, Morisada, N, Matsunoshita, N, Kamiyoshi, N, Yoshikawa, N, Iijima, K: Milder clinical aspects of X-linked Alport syndrome in men positive for the collagen IV alpha5 chain. *Kidney Int*, 85: 1208-1213, 2014.

- 38. Savige, J, Storey, H, Il Cheong, H, Gyung Kang, H, Park, E, Hilbert, P, Persikov, A, Torres-Fernandez, C, Ars, E, Torra, R, Hertz, JM, Thomassen, M, Shagam, L, Wang, D, Wang, Y, Flinter, F, Nagel, M: X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations. *PLoS One*, 11: e0161802, 2016.
 - Persikov, AV, Pillitteri, RJ, Amin, P, Schwarze, U, Byers, PH, Brodsky, B: Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. *Hum Mutat*, 24: 330-337, 2004.
 - 40. Storey, H, Savige, J, Sivakumar, V, Abbs, S, Flinter, FA: COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. *J Am Soc Nephrol*, 24: 1945-1954, 2013.
 - 41. Lennon, R, Stuart, HM, Bierzynska, A, Randles, MJ, Kerr, B, Hillman, KA, Batra, G, Campbell, J, Storey, H, Flinter, FA, Koziell, A, Welsh, GI, Saleem, MA, Webb, NJ, Woolf, AS: Coinheritance of COL4A5 and MYO1E mutations accentuate the severity of kidney disease. *Pediatr Nephrol*, 30: 1459-1465, 2015.
 - 42. Knebelmann, B, Breillat, C, Forestier, L, Arrondel, C, Jacassier, D, Giatras, I, Drouot, L, Deschenes, G, Grunfeld, JP, Broyer, M, Gubler, MC, Antignac, C: Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. *Am J Hum Genet*, 59: 1221-1232, 1996.
 - 43. Inoue, YJ, Nishio, H, Shirakawa, T, Nakanishi, K, Nakamura, H, Sumino, K, Nishiyama, K, Iijima, K, Yoshikawa, N: Detection of mutations in the COL4A5 gene in over 90% of male patients with Xlinked Alport's syndrome by RT-PCR and direct sequencing. *Am J Kidney Dis*, 34: 854-862, 1999.
 - 44. Zhang, Y, Ding, J, Wang, S, Zhang, H, Zhong, X, Liu, X, Xu, K, Wang, F: Reassessing the pathogenicity of c.2858G>T(p.(G953V)) in COL4A5 Gene: report of 19 Chinese families. *Eur J Hum Genet*, 28: 244-252, 2020.
 - 45. Slajpah, M, Gorinsek, B, Berginc, G, Vizjak, A, Ferluga, D, Hvala, A, Meglic, A, Jaksa, I, Furlan, P, Gregoric, A, Kaplan-Pavlovcic, S, Ravnik-Glavac, M, Glavac, D: Sixteen novel mutations identified in COL4A3, COL4A4, and COL4A5 genes in Slovenian families with Alport syndrome and benign familial hematuria. *Kidney Int*, 71: 1287-1295, 2007.
 - 46. Macheroux, EP, Braunisch, MC, Pucci Pegler, S, Satanovskij, R, Riedhammer, KM, Gunthner, R, Gross, O, Nagel, M, Renders, L, Hoefele, J: The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe Phenotype in a Family With X-Linked Alport Syndrome. *Front Pediatr*, 7: 485, 2019.
 - 47. Zurowska, AM, Bielska, O, Daca-Roszak, P, Jankowski, M, Szczepanska, M, Roszkowska-Bjanid, D, Kuzma-Mroczkowska, E, Panczyk-Tomaszewska, M, Moczulska, A, Drozdz, D, Hadjipanagi, D, Deltas, C, Ostalska-Nowicka, D, Rabiega, A, Taraszkiewicz, J, Taranta-Janusz, K, Wieczorkiewicz-Plaza, A, Jobs, K, Mews, J, Musial, K, Jakubowska, A, Nosek, H, Jander, AE, Koutsofti, C, Stanislawska-Sachadyn, A, Kuleszo, D, Zietkiewicz, E, Lipska-Zietkiewicz, BS: Mild X-linked Alport syndrome due to the COL4A5 G624D variant originating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in midlife. *Kidney Int*, 2020.
- 48. AM, Z: Mild X-linked Alport syndrome due to the COL4A5 G624D variant originating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in mid-life. *Kidney Int*, 2021.
- 49. Persikov, AV, Ramshaw, JA, Kirkpatrick, A, Brodsky, B: Amino acid propensities for the collagen triplehelix. *Biochemistry*, 39: 14960-14967, 2000.
- 50. Fallerini, C, Baldassarri, M, Trevisson, E, Morbidoni, V, La Manna, A, Lazzarin, R, Pasini, A, Barbano, G, Pinciaroli, AR, Garosi, G, Frullanti, E, Pinto, AM, Mencarelli, MA, Mari, F, Renieri, A, Ariani, F: Alport syndrome: impact of digenic inheritance in patients management. *Clin Genet*, 92: 34-44, 2017.
- 51. Feingold, J, Bois, E, Chompret, A, Broyer, M, Gubler, MC, Grunfeld, JP: Genetic heterogeneity of Alport syndrome. *Kidney Int*, 27: 672-677, 1985.
- 52. Lemmink, HH, Nillesen, WN, Mochizuki, T, Schroder, CH, Brunner, HG, van Oost, BA, Monnens, LA, Smeets, HJ: Benign familial hematuria due to mutation of the type IV collagen alpha4 gene. *J Clin Invest*, 98: 1114-1118, 1996.
- 53. Makareeva, E, Mertz, EL, Kuznetsova, NV, Sutter, MB, DeRidder, AM, Cabral, WA, Barnes, AM, McBride, DJ, Marini, JC, Leikin, S: Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. *J Biol Chem*, 283: 4787-4798, 2008.
- 54. Gross, O, Licht, C, Anders, HJ, Hoppe, B, Beck, B, Tonshoff, B, Hocker, B, Wygoda, S, Ehrich, JH, Pape, L, Konrad, M, Rascher, W, Dotsch, J, Muller-Wiefel, DE, Hoyer, P, Study Group Members of the Gesellschaft fur Padiatrische, N, Knebelmann, B, Pirson, Y, Grunfeld, JP, Niaudet, P, Cochat, P, Heidet, L, Lebbah, S, Torra, R, Friede, T, Lange, K, Muller, GA, Weber, M: Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. *Kidney Int*, 81: 494-501, 2012.
- 55. Kashtan, CE: Alport Syndrome. Gene Reviews

- In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1207/</u>. 2001.
- 56. Pierides, A, Voskarides, K, Athanasiou, Y, Ioannou, K, Damianou, L, Arsali, M, Zavros, M, Pierides, M, Vargemezis, V, Patsias, C, Zouvani, I, Elia, A, Kyriacou, K, Deltas, C: Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. *Nephrol Dial Transplant*, 24: 2721-2729, 2009.
- 57. Matthaiou, M, Poulii, T, Matthaiou, M, Matthaiou, M, Poulli, T, Deltas, C: Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by *COL4A3* or *COL4A4* mutations: a systematic review. *Clinical Kidney Journal* 1-12, 2020.
- 58. Gillion, V, Dahan, K, Cosyns, JP, Hilbert, P, Jadoul, M, Goffin, E, Godefroid, N, De Meyer, M, Mourad, M, Pirson, Y, Kanaan, N: Genotype and Outcome After Kidney Transplantation in Alport Syndrome. *Kidney Int Rep*, 3: 652-660, 2018.
- 59. Groopman, EE, Marasa, M, Cameron-Christie, S, Petrovski, S, Aggarwal, VS, Milo-Rasouly, H, Li, Y, Zhang, J, Nestor, J, Krithivasan, P, Lam, WY, Mitrotti, A, Piva, S, Kil, BH, Chatterjee, D, Reingold, R, Bradbury, D, DiVecchia, M, Snyder, H, Mu, X, Mehl, K, Balderes, O, Fasel, DA, Weng, C, Radhakrishnan, J, Canetta, P, Appel, GB, Bomback, AS, Ahn, W, Uy, NS, Alam, S, Cohen, DJ, Crew, RJ, Dube, GK, Rao, MK, Kamalakaran, S, Copeland, B, Ren, Z, Bridgers, J, Malone, CD, Mebane, CM, Dagaonkar, N, Fellstrom, BC, Haefliger, C, Mohan, S, Sanna-Cherchi, S, Kiryluk, K, Fleckner, J, March, R, Platt, A, Goldstein, DB, Gharavi, AG: Diagnostic Utility of Exome Sequencing for Kidney Disease. *N Engl J Med*, 380: 142-151, 2019.
- 60. Fallerini, C, Dosa, L, Tita, R, Del Prete, D, Feriozzi, S, Gai, G, Clementi, M, La Manna, A, Miglietti, N, Mancini, R, Mandrile, G, Ghiggeri, GM, Piaggio, G, Brancati, F, Diano, L, Frate, E, Pinciaroli, AR, Giani, M, Castorina, P, Bresin, E, Giachino, D, De Marchi, M, Mari, F, Bruttini, M, Renieri, A, Ariani, F: Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. *Clin Genet*, 86: 252-257, 2014.
- 61. Bullich, G, Domingo-Gallego, A, Vargas, I, Ruiz, P, Lorente-Grandoso, L, Furlano, M, Fraga, G, Madrid, A, Ariceta, G, Borregan, M, Pinero-Fernandez, JA, Rodriguez-Pena, L, Ballesta-Martinez, MJ, Llano-Rivas, I, Menica, MA, Ballarin, J, Torrents, D, Torra, R, Ars, E: A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. *Kidney Int*, 94: 363-371, 2018.
- 62. Gross, O, Tonshoff, B, Weber, LT, Pape, L, Latta, K, Fehrenbach, H, Lange-Sperandio, B, Zappel, H, Hoyer, P, Staude, H, Konig, S, John, U, Gellermann, J, Hoppe, B, Galiano, M, Hoecker, B, Ehren, R, Lerch, C, Kashtan, CE, Harden, M, Boeckhaus, J, Friede, T, German Pediatric Nephrology Study, G, Investigators, EP-TA: A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome. *Kidney Int*, 97: 1275-1286, 2020.
- 63. Hertz, JM, Juncker, I, Persson, U, Matthijs, G, Schmidtke, J, Petersen, MB, Kjeldsen, M, Gregersen, N: Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport syndrome. *Hum Mutat*, 18: 141-148, 2001.
- 64. Plant, KE, Green, PM, Vetrie, D, Flinter, FA: Detection of mutations in COL4A5 in patients with Alport syndrome. *Hum Mutat*, 13: 124-132, 1999.
- 65. King, K, Flinter, FA, Green, PM: A two-tier approach to mutation detection in the COL4A5 gene for Alport syndrome. *Hum Mutat*, 27: 1061, 2006.
- 66. Cruz-Robles, D, Garcia-Torres, R, Antignac, C, Forestier, L, de la Puente, SG, Correa-Rotter, R, Garcia-Lopez, E, Orozco, L: Three novel mutations in the COL4A5 gene in Mexican Alport syndrome patients. *Clin Genet*, 56: 242-243, 1999.
- 67. Bekheirnia, MR, Reed, B, Gregory, MC, McFann, K, Shamshirsaz, AA, Masoumi, A, Schrier, RW: Genotype-phenotype correlation in X-linked Alport syndrome. *J Am Soc Nephrol*, 21: 876-883, 2010.
- Mohammad, M, Nanra, R, Colville, D, Trevillian, P, Wang, Y, Storey, H, Flinter, F, Savige, J: A female with X-linked Alport syndrome and compound heterozygous COL4A5 mutations. *Pediatr Nephrol*, 29: 481-485, 2014.
- 69. Inoue, Y, Nishio, H, Shirakawa, T, Nakanishi, K, Nakamura, H, Sumino, K, Nishiyama, K, Iijima, K, Yoshikawa, N: Detection of mutations in the COL4A5 gene in over 90% of male patients with X-linked Alport's syndrome by RT-PCR and direct sequencing. *Am J Kidney Dis*, 34: 854-862, 1999.
- 70. Zhang, H, Ding, J, Wang, F, Zhao, D: Mutation detection of COL4An gene based on mRNA of peripheral blood lymphocytes and prenatal diagnosis of Alport syndrome in China. *Nephrology (Carlton)*, 16: 377-380, 2011.

- б